000819309 001__ 819309
000819309 005__ 20240711113507.0
000819309 0247_ $$2doi$$a10.1016/j.nme.2016.07.002
000819309 0247_ $$2Handle$$a2128/14345
000819309 0247_ $$2WOS$$aWOS:000391191500030
000819309 037__ $$aFZJ-2016-05010
000819309 041__ $$aEnglish
000819309 082__ $$a333.7
000819309 1001_ $$0P:(DE-Juel1)129811$$aWirtz, M.$$b0$$eCorresponding author
000819309 245__ $$aInfluence of helium induced nanostructures on the thermal shock performance of tungsten
000819309 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000819309 3367_ $$2DRIVER$$aarticle
000819309 3367_ $$2DataCite$$aOutput Types/Journal article
000819309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494240112_27449
000819309 3367_ $$2BibTeX$$aARTICLE
000819309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819309 3367_ $$00$$2EndNote$$aJournal Article
000819309 520__ $$aExperiments were performed in the linear plasma device PSI-2 in order to investigate the synergistic effects of combined steady-state He-plasma and thermal shock exposure. Tungsten produced according to the ITER material specifications by Plansee SE, Austria, was loaded sequentially and simultaneously by steady-state He plasma and transient thermal loads induced by a laser beam. All tungsten samples were exposed to helium plasma for 40 min at a base temperature of ca. 850 °C and a flux of ca. 2.8 × 1022 m−2s−1. Before, during and after the plasma exposure 1000 thermal shock pulses with a pulse duration of 1 ms and a power density 0.76 GW/m² were applied on the samples. The thermal shock exposure before and after plasma exposure was done at room temperature in order to investigate helium induced surface effects also within cracks. The obtained results show that the combination of He plasma with transient thermal shock events results in a severe modification such as reduced height or agglomeration of the sub-surface He-bubbles and of the created nanostructures, i.e. W-fuzz.
000819309 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000819309 588__ $$aDataset connected to CrossRef
000819309 7001_ $$0P:(DE-Juel1)164369$$aBerger, M.$$b1
000819309 7001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b2
000819309 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b3
000819309 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b4
000819309 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b5
000819309 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b6
000819309 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b7
000819309 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b8
000819309 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.07.002$$gp. S2352179115301198$$p177-180$$tNuclear materials and energy$$v9$$x2352-1791$$y2016
000819309 8564_ $$uhttps://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.pdf$$yOpenAccess
000819309 8564_ $$uhttps://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.gif?subformat=icon$$xicon$$yOpenAccess
000819309 8564_ $$uhttps://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819309 8564_ $$uhttps://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819309 8564_ $$uhttps://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819309 8564_ $$uhttps://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819309 909CO $$ooai:juser.fz-juelich.de:819309$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b0$$kFZJ
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b2$$kFZJ
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b3$$kFZJ
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b4$$kFZJ
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b5$$kFZJ
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b6$$kFZJ
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b7$$kFZJ
000819309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b8$$kFZJ
000819309 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000819309 9141_ $$y2017
000819309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819309 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000819309 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000819309 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000819309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819309 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000819309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819309 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000819309 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000819309 9801_ $$aFullTexts
000819309 980__ $$ajournal
000819309 980__ $$aVDB
000819309 980__ $$aUNRESTRICTED
000819309 980__ $$aI:(DE-Juel1)IEK-2-20101013
000819309 980__ $$aI:(DE-Juel1)IEK-4-20101013
000819309 981__ $$aI:(DE-Juel1)IMD-1-20101013
000819309 981__ $$aI:(DE-Juel1)IFN-1-20101013