001     819309
005     20240711113507.0
024 7 _ |a 10.1016/j.nme.2016.07.002
|2 doi
024 7 _ |a 2128/14345
|2 Handle
024 7 _ |a WOS:000391191500030
|2 WOS
037 _ _ |a FZJ-2016-05010
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Wirtz, M.
|0 P:(DE-Juel1)129811
|b 0
|e Corresponding author
245 _ _ |a Influence of helium induced nanostructures on the thermal shock performance of tungsten
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1494240112_27449
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Experiments were performed in the linear plasma device PSI-2 in order to investigate the synergistic effects of combined steady-state He-plasma and thermal shock exposure. Tungsten produced according to the ITER material specifications by Plansee SE, Austria, was loaded sequentially and simultaneously by steady-state He plasma and transient thermal loads induced by a laser beam. All tungsten samples were exposed to helium plasma for 40 min at a base temperature of ca. 850 °C and a flux of ca. 2.8 × 1022 m−2s−1. Before, during and after the plasma exposure 1000 thermal shock pulses with a pulse duration of 1 ms and a power density 0.76 GW/m² were applied on the samples. The thermal shock exposure before and after plasma exposure was done at room temperature in order to investigate helium induced surface effects also within cracks. The obtained results show that the combination of He plasma with transient thermal shock events results in a severe modification such as reduced height or agglomeration of the sub-surface He-bubbles and of the created nanostructures, i.e. W-fuzz.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Berger, M.
|0 P:(DE-Juel1)164369
|b 1
700 1 _ |a Huber, A.
|0 P:(DE-Juel1)130040
|b 2
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 3
700 1 _ |a Linke, J.
|0 P:(DE-Juel1)129747
|b 4
700 1 _ |a Pintsuk, G.
|0 P:(DE-Juel1)129778
|b 5
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 6
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 7
700 1 _ |a Unterberg, B.
|0 P:(DE-Juel1)6784
|b 8
773 _ _ |a 10.1016/j.nme.2016.07.002
|g p. S2352179115301198
|0 PERI:(DE-600)2808888-8
|p 177-180
|t Nuclear materials and energy
|v 9
|y 2016
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/819309/files/1-s2.0-S2352179115301198-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:819309
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129811
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129747
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)6784
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21