000819314 001__ 819314
000819314 005__ 20220930130106.0
000819314 0247_ $$2doi$$a10.5194/gmdd-8-7395-2015
000819314 0247_ $$2ISSN$$a1991-9611
000819314 0247_ $$2ISSN$$a1991-962X
000819314 0247_ $$2Handle$$a2128/12561
000819314 0247_ $$2altmetric$$aaltmetric:4678881
000819314 037__ $$aFZJ-2016-05015
000819314 041__ $$aEnglish
000819314 082__ $$a910
000819314 1001_ $$00000-0002-8290-9837$$aHan, X.$$b0
000819314 245__ $$aDasPy 1.0 – the Open Source Multivariate Land Data Assimilation Framework in combination with the Community Land Model 4.5
000819314 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2015
000819314 3367_ $$2DRIVER$$aarticle
000819314 3367_ $$2DataCite$$aOutput Types/Journal article
000819314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502086066_15126
000819314 3367_ $$2BibTeX$$aARTICLE
000819314 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819314 3367_ $$00$$2EndNote$$aJournal Article
000819314 520__ $$aData assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. Multivariate data assimilation refers to the simultaneous assimilation of observation data from multiple model state variables into a simulation model. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. We developed an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with the C++ and Fortran programming languages. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be introduced by perturbed atmospheric forcing data, and represented by perturbed soil and vegetation parameters and model initial conditions. The Community Land Model (CLM) was integrated as the model operator. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. The Community Microwave Emission Modelling platform (CMEM), COsmic-ray Soil Moisture Interaction Code (COSMIC) and the Two-Source Formulation (TSF) were integrated as observation operators for the assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy has been evaluated in several assimilation studies of neutron count intensity (soil moisture), L-band brightness temperature and land surface temperature. DasPy is parallelized using the hybrid Message Passing Interface and Open Multi-Processing techniques. All the input and output data flows are organized efficiently using the commonly used NetCDF file format. Online 1-D and 2-D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
000819314 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000819314 536__ $$0G:(DE-Juel1)hbn29_20140501$$aData Assimilation for Improved Characterization of Fluxes Across Compartmental Interfaces (hbn29_20140501)$$chbn29_20140501$$fData Assimilation for Improved Characterization of Fluxes Across Compartmental Interfaces$$x1
000819314 588__ $$aDataset connected to CrossRef
000819314 7001_ $$0P:(DE-Juel1)161461$$aHe, G.$$b1$$ufzj
000819314 7001_ $$0P:(DE-Juel1)145389$$aKumbhar, P.$$b2
000819314 7001_ $$0P:(DE-Juel1)129506$$aMontzka, C.$$b3$$ufzj
000819314 7001_ $$0P:(DE-Juel1)151405$$aKollet, S.$$b4$$ufzj
000819314 7001_ $$0P:(DE-HGF)0$$aMiyoshi, T.$$b5
000819314 7001_ $$00000-0002-4914-692X$$aRosolem, R.$$b6
000819314 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b7$$ufzj
000819314 7001_ $$0P:(DE-HGF)0$$aFranssen, H.-J. H.$$b8
000819314 7001_ $$0P:(DE-HGF)0$$aLi, X.$$b9
000819314 7001_ $$0P:(DE-HGF)0$$aZhang, Y.$$b10
000819314 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmdd-8-7395-2015$$gVol. 8, no. 8, p. 7395 - 7444$$n8$$p7395 - 7444$$tGeoscientific model development discussions$$v8$$x1991-962X$$y2015
000819314 8564_ $$uhttps://juser.fz-juelich.de/record/819314/files/gmdd-8-7395-2015.pdf$$yOpenAccess
000819314 8564_ $$uhttps://juser.fz-juelich.de/record/819314/files/gmdd-8-7395-2015.gif?subformat=icon$$xicon$$yOpenAccess
000819314 8564_ $$uhttps://juser.fz-juelich.de/record/819314/files/gmdd-8-7395-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819314 8564_ $$uhttps://juser.fz-juelich.de/record/819314/files/gmdd-8-7395-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819314 8564_ $$uhttps://juser.fz-juelich.de/record/819314/files/gmdd-8-7395-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819314 8564_ $$uhttps://juser.fz-juelich.de/record/819314/files/gmdd-8-7395-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819314 8767_ $$92015-10-09$$d2015-10-09$$eAPC$$jZahlung erfolgt
000819314 909CO $$ooai:juser.fz-juelich.de:819314$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000819314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161461$$aForschungszentrum Jülich$$b1$$kFZJ
000819314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b3$$kFZJ
000819314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b4$$kFZJ
000819314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000819314 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000819314 9141_ $$y2016
000819314 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000819314 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000819314 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000819314 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000819314 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000819314 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000819314 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000819314 9801_ $$aFullTexts
000819314 980__ $$ajournal
000819314 980__ $$aVDB
000819314 980__ $$aI:(DE-Juel1)IBG-3-20101118
000819314 980__ $$aI:(DE-Juel1)NIC-20090406
000819314 980__ $$aUNRESTRICTED
000819314 980__ $$aAPC