000819316 001__ 819316
000819316 005__ 20220930130106.0
000819316 0247_ $$2doi$$a10.3389/fncom.2016.00044
000819316 0247_ $$2Handle$$a2128/13707
000819316 0247_ $$2WOS$$aWOS:000375840700001
000819316 0247_ $$2altmetric$$aaltmetric:7541128
000819316 0247_ $$2pmid$$apmid:27242500
000819316 037__ $$aFZJ-2016-05017
000819316 041__ $$aEnglish
000819316 082__ $$a610
000819316 1001_ $$0P:(DE-Juel1)136723$$aZeitler, Magteld$$b0$$eCorresponding author$$ufzj
000819316 245__ $$aAnti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity
000819316 260__ $$aLausanne$$bFrontiers Research Foundation$$c2016
000819316 3367_ $$2DRIVER$$aarticle
000819316 3367_ $$2DataCite$$aOutput Types/Journal article
000819316 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485879152_18209
000819316 3367_ $$2BibTeX$$aARTICLE
000819316 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819316 3367_ $$00$$2EndNote$$aJournal Article
000819316 520__ $$aAbnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing–dependent plasticity CR stimulation causes a decrease of synaptic weights and finally anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and abnormal neuronal synchrony. Long-lasting desynchronizing aftereffects of CR stimulation have been verified in pre-clinical and clinical proof of concept studies. In general, for different neuromodulation approaches, both invasive and non-invasive, it is desirable to enable effective stimulation at reduced stimulation intensities, thereby avoiding side effects. For the first time, we here present a two-stage CR stimulation protocol, where two qualitatively different types of CR stimulation are delivered one after another, and the first stage comes at a particularly weak stimulation intensity. Numerical simulations show that a two-stage CR stimulation can induce the same degree of anti-kindling as a single-stage CR stimulation with intermediate stimulation intensity. This stimulation approach might be clinically beneficial in patients suffering from brain diseases characterized by abnormal neuronal synchrony where a first treatment stage should be performed at particularly weak stimulation intensities in order to avoid side effects. This might, e.g., be relevant in the context of acoustic CR stimulation in tinnitus patients with hyperacusis or in the case of electrical deep brain CR stimulation with sub-optimally positioned leads or side effects caused by stimulation of the target itself. We discuss how to apply our method in first in man and proof of concept studies.
000819316 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000819316 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x1
000819316 588__ $$aDataset connected to CrossRef
000819316 7001_ $$0P:(DE-Juel1)131884$$aTass, Peter A.$$b1$$ufzj
000819316 773__ $$0PERI:(DE-600)2452964-3$$a10.3389/fncom.2016.00044$$gVol. 10$$p44$$tFrontiers in computational neuroscience$$v10$$x1662-5188$$y2016
000819316 8564_ $$uhttps://juser.fz-juelich.de/record/819316/files/fncom-10-00044.pdf$$yOpenAccess
000819316 8564_ $$uhttps://juser.fz-juelich.de/record/819316/files/fncom-10-00044.gif?subformat=icon$$xicon$$yOpenAccess
000819316 8564_ $$uhttps://juser.fz-juelich.de/record/819316/files/fncom-10-00044.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819316 8564_ $$uhttps://juser.fz-juelich.de/record/819316/files/fncom-10-00044.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819316 8564_ $$uhttps://juser.fz-juelich.de/record/819316/files/fncom-10-00044.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819316 8564_ $$uhttps://juser.fz-juelich.de/record/819316/files/fncom-10-00044.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819316 8767_ $$92016-05-10$$d2015-12-10$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1748,- ; 2015-0051164-6; JuSER Eintrag angelegt, warten auf POF
000819316 909CO $$ooai:juser.fz-juelich.de:819316$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000819316 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819316 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819316 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000819316 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT COMPUT NEUROSC : 2015
000819316 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000819316 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000819316 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819316 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819316 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000819316 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819316 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819316 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819316 9141_ $$y2016
000819316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136723$$aForschungszentrum Jülich$$b0$$kFZJ
000819316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131884$$aForschungszentrum Jülich$$b1$$kFZJ
000819316 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000819316 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x1
000819316 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000819316 9801_ $$aFullTexts
000819316 980__ $$ajournal
000819316 980__ $$aVDB
000819316 980__ $$aUNRESTRICTED
000819316 980__ $$aI:(DE-Juel1)INM-7-20090406
000819316 980__ $$aAPC