000819324 001__ 819324
000819324 005__ 20250129094156.0
000819324 0247_ $$2doi$$a10.1088/0953-8984/28/47/476001
000819324 0247_ $$2ISSN$$a0953-8984
000819324 0247_ $$2ISSN$$a1361-648X
000819324 0247_ $$2WOS$$aWOS:000385448300001
000819324 0247_ $$2altmetric$$aaltmetric:11817025
000819324 0247_ $$2pmid$$apmid:27633731
000819324 037__ $$aFZJ-2016-05023
000819324 041__ $$aEnglish
000819324 082__ $$a530
000819324 1001_ $$0P:(DE-Juel1)130778$$aKumar, Naveen$$b0$$eCorresponding author$$ufzj
000819324 245__ $$aHyperfine and crystal field interactions in multiferroic HoCrO$_{3}$
000819324 260__ $$aBristol$$bIOP Publ.$$c2016
000819324 3367_ $$2DRIVER$$aarticle
000819324 3367_ $$2DataCite$$aOutput Types/Journal article
000819324 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1487257553_21881
000819324 3367_ $$2BibTeX$$aARTICLE
000819324 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819324 3367_ $$00$$2EndNote$$aJournal Article
000819324 520__ $$aWe report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK–290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5–200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) μeV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term $\gamma =6.3(8)$ mJ mol−1 K−2 in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, ~17.2 Jmol−1 K−1 and ~34 Jmol−1 K−1, respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho3+ and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R = rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity.
000819324 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000819324 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000819324 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000819324 588__ $$aDataset connected to CrossRef
000819324 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x0
000819324 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000819324 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000819324 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000819324 7001_ $$0P:(DE-Juel1)131047$$aXiao, Y.$$b1$$ufzj
000819324 7001_ $$0P:(DE-HGF)0$$aNair, H. S.$$b2
000819324 7001_ $$0P:(DE-Juel1)131018$$aVoigt, J.$$b3$$ufzj
000819324 7001_ $$0P:(DE-Juel1)130947$$aSchmitz, Berthold$$b4$$ufzj
000819324 7001_ $$0P:(DE-HGF)0$$aChatterji, T.$$b5
000819324 7001_ $$0P:(DE-Juel1)143752$$aJalarvo, Niina$$b6$$ufzj
000819324 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b7$$ufzj
000819324 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/28/47/476001$$gVol. 28, no. 47, p. 476001 -$$n47$$p476001$$tJournal of physics / Condensed matter$$v28$$x1361-648X$$y2016
000819324 8564_ $$uhttps://juser.fz-juelich.de/record/819324/files/cm_28_47_476001.pdf$$yRestricted
000819324 8564_ $$uhttps://juser.fz-juelich.de/record/819324/files/cm_28_47_476001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000819324 909CO $$ooai:juser.fz-juelich.de:819324$$pVDB$$pVDB:MLZ
000819324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130778$$aForschungszentrum Jülich$$b0$$kFZJ
000819324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131047$$aForschungszentrum Jülich$$b1$$kFZJ
000819324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131018$$aForschungszentrum Jülich$$b3$$kFZJ
000819324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130947$$aForschungszentrum Jülich$$b4$$kFZJ
000819324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143752$$aForschungszentrum Jülich$$b6$$kFZJ
000819324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b7$$kFZJ
000819324 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000819324 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000819324 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000819324 9141_ $$y2016
000819324 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819324 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2015
000819324 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819324 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819324 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819324 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000819324 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000819324 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819324 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819324 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000819324 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819324 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000819324 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819324 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x0
000819324 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000819324 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x2
000819324 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000819324 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x4
000819324 9201_ $$0I:(DE-Juel1)JCNS-SNS-20110128$$kJCNS-SNS$$lJCNS-SNS$$x5
000819324 980__ $$ajournal
000819324 980__ $$aVDB
000819324 980__ $$aI:(DE-Juel1)ICS-1-20110106
000819324 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000819324 980__ $$aI:(DE-Juel1)PGI-4-20110106
000819324 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000819324 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000819324 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000819324 980__ $$aUNRESTRICTED
000819324 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000819324 981__ $$aI:(DE-Juel1)IBI-8-20200312
000819324 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000819324 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000819324 981__ $$aI:(DE-Juel1)PGI-4-20110106
000819324 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000819324 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000819324 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128