001     819328
005     20210129224242.0
024 7 _ |a 10.1038/srep33521
|2 doi
024 7 _ |a 2128/12419
|2 Handle
024 7 _ |a WOS:000383385300001
|2 WOS
024 7 _ |a altmetric:12098539
|2 altmetric
024 7 _ |a pmid:27641933
|2 pmid
037 _ _ |a FZJ-2016-05027
082 _ _ |a 000
100 1 _ |a Tang, Yunqing
|0 P:(DE-Juel1)156501
|b 0
245 _ _ |a Automatic Bayesian single molecule identification for localization microscopy
260 _ _ |a London
|c 2016
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1475138871_2011
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Single molecule localization microscopy (SMLM) is on its way to become a mainstream imaging technique in the life sciences. However, analysis of SMLM data is biased by user provided subjective parameters required by the analysis software. To remove this human bias we introduce here the Auto-Bayes method that executes the analysis of SMLM data automatically. We demonstrate the success of the method using the photoelectron count of an emitter as selection characteristic. Moreover, the principle can be used for any characteristic that is bimodally distributed with respect to false and true emitters. The method also allows generation of an emitter reliability map for estimating quality of SMLM-based structures. The potential of the Auto-Bayes method is shown by the fact that our first basic implementation was able to outperform all software packages that were compared in the ISBI online challenge in 2015, with respect to molecule detection (Jaccard index).
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hendriks, Johnny
|0 P:(DE-Juel1)141764
|b 1
|u fzj
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 2
|u fzj
700 1 _ |a Dai, Luru
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Li, Junbai
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1038/srep33521
|g Vol. 6, p. 33521 -
|0 PERI:(DE-600)2615211-3
|p 33521 -
|t Scientific reports
|v 6
|y 2016
|x 2045-2322
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/819328/files/srep33521.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/819328/files/srep33521.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/819328/files/srep33521.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/819328/files/srep33521.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/819328/files/srep33521.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/819328/files/srep33521.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:819328
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)141764
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131924
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21