000819405 001__ 819405
000819405 005__ 20210129224255.0
000819405 0247_ $$2doi$$a10.1016/j.rse.2016.09.017
000819405 0247_ $$2ISSN$$a0034-4257
000819405 0247_ $$2ISSN$$a1879-0704
000819405 0247_ $$2WOS$$aWOS:000396382500045
000819405 037__ $$aFZJ-2016-05093
000819405 041__ $$aEnglish
000819405 082__ $$a050
000819405 1001_ $$0P:(DE-HGF)0$$aVilfan, Nastassia$$b0$$eCorresponding author
000819405 245__ $$aFluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra
000819405 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000819405 3367_ $$2DRIVER$$aarticle
000819405 3367_ $$2DataCite$$aOutput Types/Journal article
000819405 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1475668242_14262
000819405 3367_ $$2BibTeX$$aARTICLE
000819405 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819405 3367_ $$00$$2EndNote$$aJournal Article
000819405 520__ $$aWe present the Fluspect-B model (generally referred to as Fluspect), which simulates leaf chlorophyll fluorescence (ChlF), reflectance and transmittance spectra. The existing PROSPECT model and its concept of a compact leaf are used as a starting point, and the differential equations for radiative transfer within the leaf are solved by an efficient doubling algorithm. Due to the simplicity of these equations, Fluspect offers a high computational speed. With incident light provided as the main input parameter, Fluspect calculates the emission of ChlF on both the illuminated and shaded side of the leaf. Other input parameters are chlorophyll and carotenoid concentrations, leaf water, dry matter and senescent material (brown pigments) content, leaf mesophyll structure parameter and ChlF quantum efficiency for the two photosystems, PS-I and PS-II. We investigated the model performance using measurements of leaf reflectance, transmittance and ChlF spectra, collected for barley and sugar beet leaves in both a laboratory and outdoors setting. The plants had been grown under various illumination conditions to increase between-leaf variability of leaf biochemical and structural properties. We retrieved the model parameters, compared them to corresponding destructive measurements and finally, used them to simulate ChlF on either side of the leaf at several light intensities. The results show that the model reproduces observed SIF accurately, especially for leaves measured under natural illumination. Most of the observed between-leaf variability of ChlF could be explained from differences in leaf biochemical and structural properties, with potential additional information held by ChlF emission efficiency parameters.
000819405 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000819405 588__ $$aDataset connected to CrossRef
000819405 7001_ $$0P:(DE-HGF)0$$avan der Tol, Christiaan$$b1
000819405 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b2$$ufzj
000819405 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b3$$ufzj
000819405 7001_ $$00000-0003-4696-2144$$aVerhoef, Wouter$$b4
000819405 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2016.09.017$$gVol. 186, p. 596 - 615$$p596 - 615$$tRemote sensing of environment$$v186$$x0034-4257$$y2016
000819405 8564_ $$uhttps://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.pdf$$yRestricted
000819405 8564_ $$uhttps://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.gif?subformat=icon$$xicon$$yRestricted
000819405 8564_ $$uhttps://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000819405 8564_ $$uhttps://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000819405 8564_ $$uhttps://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000819405 8564_ $$uhttps://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000819405 909CO $$ooai:juser.fz-juelich.de:819405$$pVDB
000819405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b2$$kFZJ
000819405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b3$$kFZJ
000819405 9101_ $$0I:(DE-HGF)0$$60000-0003-4696-2144$$aExternal Institute$$b4$$kExtern
000819405 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000819405 9141_ $$y2016
000819405 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819405 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819405 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000819405 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000819405 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2015
000819405 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS ENVIRON : 2015
000819405 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819405 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819405 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819405 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000819405 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819405 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819405 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000819405 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819405 920__ $$lyes
000819405 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000819405 980__ $$ajournal
000819405 980__ $$aVDB
000819405 980__ $$aUNRESTRICTED
000819405 980__ $$aI:(DE-Juel1)IBG-2-20101118