001     819405
005     20210129224255.0
024 7 _ |a 10.1016/j.rse.2016.09.017
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a WOS:000396382500045
|2 WOS
037 _ _ |a FZJ-2016-05093
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Vilfan, Nastassia
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1475668242_14262
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present the Fluspect-B model (generally referred to as Fluspect), which simulates leaf chlorophyll fluorescence (ChlF), reflectance and transmittance spectra. The existing PROSPECT model and its concept of a compact leaf are used as a starting point, and the differential equations for radiative transfer within the leaf are solved by an efficient doubling algorithm. Due to the simplicity of these equations, Fluspect offers a high computational speed. With incident light provided as the main input parameter, Fluspect calculates the emission of ChlF on both the illuminated and shaded side of the leaf. Other input parameters are chlorophyll and carotenoid concentrations, leaf water, dry matter and senescent material (brown pigments) content, leaf mesophyll structure parameter and ChlF quantum efficiency for the two photosystems, PS-I and PS-II. We investigated the model performance using measurements of leaf reflectance, transmittance and ChlF spectra, collected for barley and sugar beet leaves in both a laboratory and outdoors setting. The plants had been grown under various illumination conditions to increase between-leaf variability of leaf biochemical and structural properties. We retrieved the model parameters, compared them to corresponding destructive measurements and finally, used them to simulate ChlF on either side of the leaf at several light intensities. The results show that the model reproduces observed SIF accurately, especially for leaves measured under natural illumination. Most of the observed between-leaf variability of ChlF could be explained from differences in leaf biochemical and structural properties, with potential additional information held by ChlF emission efficiency parameters.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a van der Tol, Christiaan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 2
|u fzj
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 3
|u fzj
700 1 _ |a Verhoef, Wouter
|0 0000-0003-4696-2144
|b 4
773 _ _ |a 10.1016/j.rse.2016.09.017
|g Vol. 186, p. 596 - 615
|0 PERI:(DE-600)1498713-2
|p 596 - 615
|t Remote sensing of environment
|v 186
|y 2016
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819405/files/1-s2.0-S0034425716303601-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:819405
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129388
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0003-4696-2144
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21