001     819510
005     20220930130107.0
024 7 _ |a 10.2136/vzj2016.05.0043
|2 doi
024 7 _ |a 2128/12595
|2 Handle
024 7 _ |a WOS:000389548200004
|2 WOS
024 7 _ |a altmetric:12444560
|2 altmetric
037 _ _ |a FZJ-2016-05153
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Cai, Gaochao
|0 P:(DE-Juel1)156154
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Construction of Minirhizotron Facilities for Investigating Root Zone Processes
260 _ _ |a Madison, Wis.
|c 2016
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1478096853_9986
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Minimally invasive monitoring of root development and soil states (soil moisture, temperature) in undisturbed soils during a crop growing cycle is a challenging task. Minirhizotron (MR) tubes offer the possibility to view root development in situ with time. Two MR facilities were constructed in two different soils, stony vs. silty, to monitor root growth, root zone processes, and their dependence on soil water availability. To obtain a representative image of the root distribution, 7-m-long tubes were installed horizontally at 10-, 20-, 40-, 60-, 80-, and 120-cm depths. A homemade system was developed to install MR tubes in the silty soil in horizontally drilled straight holes. For the stony soil, the soil rhizotubes were installed in an excavated and subsequently backfilled pit. In both facilities, three subplots were established with different water treatments: rain sheltered, rainfed, and irrigated. To monitor soil moisture, water potential, and soil temperature, time domain reflectometer probes, tensiometers, and matrix water potential sensors were installed. Soil water content profiles in space and time were obtained between two MR tubes using cross-hole ground-penetrating radar along the tubes at different depths. Results from the first growing season of winter wheat (Triticum aestivum L.) after installation demonstrate that differences in root development, soil water, and temperature dynamics can be observed among the different soil types and water treatments. When combined with additional measurements of crop development and transpiration, these data provide key information that is essential to validate and parameterize root development and water uptake models in soil–vegetation–atmosphere transfer models.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 1
|u fzj
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 2
|u fzj
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 3
|u fzj
700 1 _ |a Neumann, Joschka
|0 P:(DE-Juel1)145411
|b 4
|u fzj
700 1 _ |a Hermes, Normen
|0 P:(DE-Juel1)129470
|b 5
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
|u fzj
773 _ _ |a 10.2136/vzj2016.05.0043
|g Vol. 15, no. 9, p. 0 -
|0 PERI:(DE-600)2088189-7
|n 9
|p
|t Vadose zone journal
|v 15
|y 2016
|x 1539-1663
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/819510/files/vzj-15-9-vzj2016.05.0043.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/819510/files/vzj-15-9-vzj2016.05.0043.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/819510/files/vzj-15-9-vzj2016.05.0043.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/819510/files/vzj-15-9-vzj2016.05.0043.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/819510/files/vzj-15-9-vzj2016.05.0043.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/819510/files/vzj-15-9-vzj2016.05.0043.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:819510
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156154
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129561
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145411
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129470
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21