001     819526
005     20240619083526.0
024 7 _ |a 10.3390/polym8080291
|2 doi
024 7 _ |a 2128/12907
|2 Handle
024 7 _ |a WOS:000384520900007
|2 WOS
024 7 _ |a altmetric:10423303
|2 altmetric
037 _ _ |a FZJ-2016-05169
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Lang, Christian
|0 P:(DE-Juel1)168105
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The Connection between Biaxial Orientation and Shear Thinning for Quasi-Ideal Rods
260 _ _ |a Basel
|c 2016
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484901654_27110
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The complete orientational ordering tensor of quasi-ideal colloidal rods is obtainedas a function of shear rate by performing rheo-SANS (rheology with small angle neutronscattering) measurements on isotropic fd-virus suspensions in the two relevant scatteringplanes, the flow-gradient (1-2) and the flow-vorticity (1-3) plane. Microscopic ordering canbe identified as the origin of the observed shear thinning. A qualitative description of therheological response by Smoluchowski, as well as Doi–Edwards–Kuzuu theory is possible,as we obtain a master curve for different concentrations, scaling the shear rate with theapparent collective rotational diffusion coefficient. However, the observation suggests that theinterdependence of ordering and shear thinning at small shear rates is stronger than predicted.The extracted zero-shear viscosity matches the concentration dependence of the self-diffusion ofrods in semi-dilute solutions, while the director tilts close towards the flow direction already atvery low shear rates. In contrast, we observe a smaller dependence on the shear rate in the overallordering at high shear rates, as well as an ever-increasing biaxiality.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a DiStruc - Directed Colloidal Structure at the Meso-Scale (641839)
|0 G:(EU-Grant)641839
|c 641839
|f H2020-MSCA-ITN-2014
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kohlbrecher, Joachim
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Porcar, Lionel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lettinga, M.P.
|0 P:(DE-Juel1)130797
|b 3
|u fzj
773 _ _ |a 10.3390/polym8080291
|g Vol. 8, no. 8, p. 291 -
|0 PERI:(DE-600)2527146-5
|n 8
|p 291
|t Polymers
|v 8
|y 2016
|x 2073-4360
856 4 _ |u https://juser.fz-juelich.de/record/819526/files/polymers-08-00291.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819526/files/polymers-08-00291.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819526/files/polymers-08-00291.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819526/files/polymers-08-00291.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819526/files/polymers-08-00291.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:819526
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168105
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130797
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b POLYMERS-BASEL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21