000819629 001__ 819629
000819629 005__ 20210129224322.0
000819629 0247_ $$2doi$$a10.3389/fmicb.2016.01524
000819629 0247_ $$2Handle$$a2128/12508
000819629 0247_ $$2WOS$$aWOS:000384171100003
000819629 0247_ $$2altmetric$$aaltmetric:11965339
000819629 0247_ $$2pmid$$apmid:27725815
000819629 037__ $$aFZJ-2016-05244
000819629 041__ $$aEnglish
000819629 082__ $$a570
000819629 1001_ $$0P:(DE-HGF)0$$aKramer, Susanne$$b0
000819629 245__ $$aResource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil
000819629 260__ $$aLausanne$$bFrontiers Media$$c2016
000819629 3367_ $$2DRIVER$$aarticle
000819629 3367_ $$2DataCite$$aOutput Types/Journal article
000819629 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1476167373_21565
000819629 3367_ $$2BibTeX$$aARTICLE
000819629 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819629 3367_ $$00$$2EndNote$$aJournal Article
000819629 520__ $$aThe flow of plant-derived carbon in soil is a key component of global carbon cycling. Conceptual models of trophic carbon fluxes in soil have assumed separate bacterial and fungal energy channels in the detritusphere, controlled by both substrate complexity and recalcitrance. However, detailed understanding of the key populations involved and niche-partitioning between them is limited. Here, a microcosm experiment was performed to trace the flow of detritusphere C from substrate analogs (glucose, cellulose) and plant biomass amendments (maize leaves, roots) in an agricultural soil. Carbon flow was traced by rRNA stable isotope probing and amplicon sequencing across three microbial kingdoms. Distinct lineages within the Actinobacteria, Bacteroidetes, Gammaproteobacteria, Basidiomycota, Ascomycota as well as Peronosporomycetes were identified as important primary substrate consumers. A dynamic succession of primary consumers was observed especially in the cellulose treatments, but also in plant amendments over time. While intra-kingdom niche partitioning was clearly observed, distinct bacterial and fungal energy channels were not apparent. Furthermore, while the diversity of primary substrate consumers did not notably increase with substrate complexity, consumer succession and secondary trophic links to bacterivorous and fungivorous microbes resulted in increased food web complexity in the more recalcitrant substrates. This suggests that rather than substrate-defined energy channels, consumer succession as well as intra- and inter-kingdom cross-feeding should be considered as mechanisms supporting food web complexity in the detritusphere.
000819629 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000819629 588__ $$aDataset connected to CrossRef
000819629 7001_ $$0P:(DE-HGF)0$$aDibbern, Dörte$$b1
000819629 7001_ $$0P:(DE-HGF)0$$aMoll, Julia$$b2
000819629 7001_ $$0P:(DE-HGF)0$$aHuenninghaus, Maike$$b3
000819629 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b4$$ufzj
000819629 7001_ $$0P:(DE-HGF)0$$aKrueger, Dirk$$b5
000819629 7001_ $$0P:(DE-HGF)0$$aMarhan, Sven$$b6
000819629 7001_ $$0P:(DE-HGF)0$$aUrich, Tim$$b7
000819629 7001_ $$0P:(DE-HGF)0$$aWubet, Tesfaye$$b8
000819629 7001_ $$0P:(DE-HGF)0$$aBonkowski, Michael$$b9
000819629 7001_ $$0P:(DE-HGF)0$$aBuscot, François$$b10
000819629 7001_ $$0P:(DE-HGF)0$$aLueders, Tillmann$$b11$$eCorresponding author
000819629 7001_ $$0P:(DE-HGF)0$$aKandeler, Ellen$$b12
000819629 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2016.01524$$gVol. 7$$p1524$$tFrontiers in microbiology$$v7$$x1664-302X$$y2016
000819629 8564_ $$uhttps://juser.fz-juelich.de/record/819629/files/fmicb-07-01524.pdf$$yOpenAccess
000819629 8564_ $$uhttps://juser.fz-juelich.de/record/819629/files/fmicb-07-01524.gif?subformat=icon$$xicon$$yOpenAccess
000819629 8564_ $$uhttps://juser.fz-juelich.de/record/819629/files/fmicb-07-01524.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819629 8564_ $$uhttps://juser.fz-juelich.de/record/819629/files/fmicb-07-01524.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819629 8564_ $$uhttps://juser.fz-juelich.de/record/819629/files/fmicb-07-01524.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819629 8564_ $$uhttps://juser.fz-juelich.de/record/819629/files/fmicb-07-01524.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819629 909CO $$ooai:juser.fz-juelich.de:819629$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000819629 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b4$$kFZJ
000819629 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000819629 9141_ $$y2016
000819629 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819629 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819629 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000819629 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2015
000819629 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000819629 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000819629 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819629 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819629 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000819629 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819629 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819629 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819629 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819629 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000819629 980__ $$ajournal
000819629 980__ $$aVDB
000819629 980__ $$aUNRESTRICTED
000819629 980__ $$aI:(DE-Juel1)IBG-2-20101118
000819629 9801_ $$aFullTexts