000819686 001__ 819686
000819686 005__ 20210129224335.0
000819686 037__ $$aFZJ-2016-05293
000819686 1001_ $$0P:(DE-Juel1)161308$$aDai, Yang$$b0$$ufzj
000819686 1112_ $$aInternational Conference on: Nano confined superconductors and their application$$cGarmisch-Partenkirchen$$d2016-09-03 - 2016-09-07$$wGermany
000819686 245__ $$aStrain Induced insulator-conductor transition in epitaxial SrTiO3 films
000819686 260__ $$c2016
000819686 3367_ $$033$$2EndNote$$aConference Paper
000819686 3367_ $$2BibTeX$$aINPROCEEDINGS
000819686 3367_ $$2DRIVER$$aconferenceObject
000819686 3367_ $$2ORCID$$aCONFERENCE_POSTER
000819686 3367_ $$2DataCite$$aOutput Types/Conference Poster
000819686 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1479901946_25245$$xInvited
000819686 520__ $$aThe metal-insulator transition temperature of SrTiO3 films grown on single crystalline DyScO3 (110), TbScO3 (110), and GdScO3 (110) substrates is tuned by the lattice-mismatch epitaxial strain. X-ray diffraction measurements demonstrate that all films are grown epitaxially. A systematic variation in the electrical transport properties has been observed with the change in the lattice mismatch between films and various substrates. It is shown that by a proper selection of mismatch between 0 to 1.6 % range of this study) and thickness between 5 to 200 nm of films, it is possible to control and precisely tune the metal-insulator transition temperature to a desired value, i.e. from 10 to 300 K. We demonstrate electrically switchable resistance using planar electrodes with 200-1000 nm distance. The electronic transport experimental results show an anisotropy transport for the anisotropically strained films. This confirms that the anisotropic misfit induced two in-plane phases have different behaviors that is highly directionally-dependent. Our results might be of importance for applications in storage, memory, and even artificial synaptic devices for neuromorphic computing.
000819686 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000819686 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b1$$ufzj
000819686 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b2$$ufzj
000819686 909CO $$ooai:juser.fz-juelich.de:819686$$pVDB
000819686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161308$$aForschungszentrum Jülich$$b0$$kFZJ
000819686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b1$$kFZJ
000819686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b2$$kFZJ
000819686 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000819686 9141_ $$y2016
000819686 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000819686 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000819686 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000819686 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000819686 980__ $$aposter
000819686 980__ $$aVDB
000819686 980__ $$aUNRESTRICTED
000819686 980__ $$aI:(DE-Juel1)PGI-8-20110106
000819686 980__ $$aI:(DE-82)080009_20140620
000819686 980__ $$aI:(DE-Juel1)PGI-9-20110106
000819686 981__ $$aI:(DE-Juel1)PGI-9-20110106