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Abstract: We study the influence of finite shear deformations on the microstructure and rheology

of solutions of entangled semiflexible polymers theoretically and by numerical simulations and

experiments with filamentous actin. Based on the tube model of semiflexible polymers, we predict

that large finite shear deformations strongly affect the average tube width and curvature, thereby

exciting considerable restoring stresses. In contrast, the associated shear alignment is moderate,

with little impact on the average tube parameters, and thus expected to be long-lived and detectable

after cessation of shear. Similarly, topologically preserved hairpin configurations are predicted

to leave a long-lived fingerprint in the shape of the distributions of tube widths and curvatures.

Our numerical and experimental data support the theory.
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1. Introduction

Semiflexible polymers are fundamental structural and functional building blocks of biological

matter. They are the main constituents of the dynamic cytoskeletal networks and extracellular

matrices that maintain the cell’s mechanical stability and integrity. By controlling the mesoscale

architecture of these scaffolds, cells regulate their response to mechanical load, and living organisms

realize a wide range of mechanical properties and functions using only relatively few polymeric

constituents [1,2]. Networks of semiflexible polymers are therefore at the core of many attempts

to understand the rich mesoscopic and macroscopic mechanical response of biological matter in

terms of its molecular machinery [3]. Over the last decades, great progress has been made by

studying reduced in vitro model systems that share many macroscopically observed features of the

far more complex natural systems [3–6]. Their mesoscale architecture is commonly characterized by

a small set of mesoscopic parameters such as mesh size, polymer bundle thickness, and crosslinker

concentration [7–9].

The classical rheological model for entangled solutions of flexible polymers is the so-called tube

model [10,11]. It reduces the complex many-body problem to a simple mean-field picture featuring

a test polymer in a long-lived tube-shaped confining cage, and thereby light-handedly accounts

for some gross features of the linear rheology. Additional considerations are required to address

the more intricate nonlinear rheology. For example, finite-chain stretching due to intermolecular

friction [12] and tube contraction [13] were proposed to cause shear-stiffening and a rate-dependent

stress overshoot during shear startup; (convective) constraint release [14] and similar concepts [15]

were proposed to account for shear-softening.
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One may expect similar ideas to apply to the much stiffer biopolymers that govern the mechanics

of biological cells and tissues. Indeed, biopolymer solutions are generally reported to exhibit

strain-softening and shear-thinning [16–19] under slow or stationary shearing, in accordance with

predictions [20,21] based on a version of the tube model adapted to semiflexible polymers [22].

Again additional concepts, such as transient entropic filament stretching excited by some interchain

friction due to transient filament crosslinking [1,23], were invoked to account for observations

of transient shear-stiffening in response to large finite shear strains at higher rates [18,19,23–25].

Alternatively, fiber-lattice or “mikado” models for crosslinked networks relate the macroscopic

stiffening not to the response of the individual constituents (modeled as linear elements) but to

the collective behavior of a sparse sub-isostatic network [26]. An imposed strain is first taken up

by so-called floppy modes [27,28], before the network becomes rigid at a critical strain [29,30].

Brownian-dynamics simulations [31] support the notion that stiffening at intermediate timescales

(when the individual fibers have locally equilibrated) is due to slower collective modes.

Recent experiments combining bulk and microrheology measurements with confocal

fluorescence microscopy and particle tracking techniques were able to record the conformation

and orientation of individual filaments under shear [17,32–35], and found them to be very sensitive

to the polymer concentration. In very dilute solutions, actin filaments perform a tumbling motion,

switching between an advective and a diffusive phase, corresponding to strongly buckled (U-shaped)

and stretched polymer conformations, respectively [34]. In the semi-dilute regime, tumbling is

modified by filament–filament collisions, increasing both filament alignment [35] and bending [17],

as evidenced by broad tails in the distribution of the local filament curvature. Such observations

challenge mesoscopic theories and computer simulations [26,36–39] to extend the simple network

models and also consider densification [33], ordering and alignment [17,40], and even lengthening [41]

of fibers.

In the present paper, we address two major effects of shear onto the constituent polymers,

namely alignment and bending, on the basis of the tube model of semiflexible polymers. In the

following section, we derive theoretical predictions for the affine and non-affine shear alignment and

the tube-width and curvature distributions in a sheared semiflexible polymer solution. They are

then tested by dedicated computer simulations and experiments with semidilute F-actin solutions.

Technical details are deferred to Section 4.

2. Results and Discussion

As pointed out in the introduction, shearing a semidilute polymer solution will generally deform

and align the individual polymers and their long-lived tube-shaped confinement cages. In the

following, we study these two effects separately. We first concentrate on the effect of an externally

imposed nematic tube alignment on the local packing structure, quantified in terms of the tube width,

in Section 2.1. We then ask how much alignment is actually caused by shearing. Following Morse [20]

and Fernández et al. [21], we moreover estimate the tube deformation due to large finite shear strains

by minimizing a model free energy and analyze the consequences for the tube-width and curvature

distributions, in Section 2.2. Finally, we corroborate our key theoretical predictions by computer

simulations and experiments with F-actin solutions, in Sections 2.3 and 2.4.

2.1. Tube Alignment

In the absence of crosslinking molecules, the structure and mechanics of the transient polymer

network that dominates the mechanical response of a semidilute biopolymer solution is governed by

long-lived topological entanglements. They constrain the thermal motion of each constituent filament

so that it remains effectively confined to a tube-like cage formed by surrounding filaments [42].

Shear is expected to cause some alignment of the polymers and their confining tubes, which is

otherwise not entropically favorable below the nematic transition, and thereby to widen the tubes.
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In the following, we extend the so-called binary-collision approximation (BCA) developed in the

classical tube model of semiflexible polymers [43] to quantify the effect theoretically.

As usual, the polymer solution is characterized by its chain length concentration ρ, the persistence

length Lp of the constituting polymers, and the nematic order parameter

S = (3/2)
∫

du (u · d)2 fS(u)− 1/2 . (1)

Here, fS(u) denotes the distribution of the normalized tangent vector u of the filaments or

tubes, respectively, and d their mean direction. Extending standard procedures [43,44], as detailed in

Section 4.3, we arrive at the following BCA predictions for the mean tube radius and entanglement

length for a solution of prealigned polymers:

R(S) = [4α0 I(S)ρ]−3/5L−1/5
p ∼ R(0)(1 + 3S2/8) ,

Le(S) = [α0 I(S)ρ/8]−2/5L1/5
p ∼ Le(0)(1 + S2/4) .

(2)

Here, I(S) is the normalized packing entropy of the solution, which we estimate by

Onsager’s rigid-rod prediction [45] to derive the final asymptotic expressions, valid for weak

alignment (small S). A numerical solution of the full theory corroborates what the asymptotic

expressions suggest, namely that strong alignment (S → 1) is required to induce any sizeable

tube widening. This is in line with the prediction R(S)/R(0) ∝ I(S)−1/2 for rigid rod solutions,

as derived by Doi and Edwards from geometrical arguments based on pair collisions [11] and

by Sussman and Schweizer [46] building on the binary-collision approach to rigid-rod solutions

by Szamel [47]. The caging of rigid rods and the entropic repulsion and attraction induced

by the conformational fluctuations of semiflexible polymers, encoded in Equation (2), thus yield

quantitatively similar predictions. Our quantitative result is compared to our experiments and

simulations in Section 2.3, below.

In References [44,48], the BCA scheme was generalized to the so-called segment-fluid

approximation that gives access to the tube fluctuations as encoded in the distributions P(R) and

P(Le) of both the tube width and the entanglement length. The predictions were found to be in good

agreement with experimental data obtained from partially fluorescently labeled F-actin solutions,

allowing for a decent global fit for various actin concentrations. Within our extended version of

the BCA with preferential filament alignment (detailed in Section 4), the distribution functions for

the reduced variables r ≡ R/R and le ≡ Le/Le take the form of universal scaling functions that

are not only independent of concentration but also of the nematic order parameter S. Moreover,

the distribution of the entanglement length, which is the characteristic correlation length (of the

local tangent orientations, tube widths, curvatures, etc.) along the tube backbone, is predicted to

be strongly peaked around the its mean: l2
e − 1 ≈ 0.01. As a consequence, our above discussion of the

effect of alignment onto the solution rheology on the level of the mean values R and Le should suffice.

To get a rough idea, how much alignment is actually caused by shearing an initially isotropic

solution, we estimate the alignment of short, relatively straight tube segments from the affine

response of a solution of rigid phantom rods [45],

S(γ) ∼ 3γ/10 (S < 1) . (3)

The linear increase with applied strain is dictated by symmetry [38] and thus more general

than its derivation, which is detailed in Section 4.4, where we additionally derive the corresponding

angular distribution of the tube-segment directions. Beyond the linear asymptotic regime, we find

a considerable flattening of S(γ) at about γ & 3, as illustrated in Figure 1. Shear alignment beyond

S ≈ 0.7 is thus very hard to achieve. Now, using the result for S(γ) in Equation (2), we obtain the
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following prediction for the strain-dependence of the tube radius and entanglement length due to

shear alignment,

R(γ)/R(0) ∼ 1 + 0.034γ2 ,

Le(γ)/Le(0) ∼ 1 + 0.023γ2 .
(4)

The small numerical coefficients show that both quantities are weakly affected even by quite

substantial shearing, as far as shear alignment is considered. This is indeed also borne out by our

computer simulations and experiments discussed in Section 2.3, below. As a consequence, also

the restoring forces associated with shear alignment should be weak. For this reason we expect it

to persist long after a large finite shear deformation has been applied. However, shearing affects

the packing structure of the polymer solution not only through shear alignment, but also through

(non-affine) tube deformations, for which more sizeable rheological consequences were indeed

predicted by Morse [20] and Fernández et al. [21]. These are analyzed in the next paragraph.
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Figure 1. Shear alignment of tube segments. (a) Strain-dependence of the nematic order parameter

S(γ): affine scaling, as obtained for two- and three-dimensional solutions of phantom rods

(Section 4.4), and the numerical estimate from the unit-cell model [21] (see Section 4.5). Up to strains

of order one, the results are well captured by the linear asymptotic scaling of Equation (3), while

S(γ) flattens out for larger strains, implying that perfect shear alignment is hard to achieve,

even if quite substantial strains are imposed; (b) The angular distribution of the two-dimensional

phantom-rod solution, according to Equation (19). With increasing strain the bimodal structure

becomes more pronounced.

2.2. Tube Deformation

The extended BCA theory used in the above calculation is an effective two-body theory and

thus blind to the complicated many-body effects involved in shearing. The unit-cell approach by

Fernández et al. [21] considers a test polymer together with two collision partners located on opposite

sides, instead (see Section 4.5), and can thereby capture some geometric aspects inaccessible to

the BCA. In particular, it predicts non-affine deformations of the microstructure, because only the

tube–tube collision points (or, alternatively, the centers of the confining tubes) are slaved to the affine

deformation field, whereas the backbone contour of the considered test tube relaxes to a (non-affine)

conformation that minimizes the unit-cell free energy. As a consequence, the strain-dependent order

parameter S(γ) may generally be expected to differ from the affine estimate in Equation (3). But we

find good agreement between both predictions for moderate strains γ < 1, and even for the saturation

at large strains (beyond γ ≈ 3), as detailed in Section 4.5 and illustrated in Figure 1. The non-affine

contributions merely slightly enhance the alignment at intermediate strains. Altogether, the unit-cell

model thus confirms the above phantom-rod prediction that shear alignment is effectively bound to

remain relatively moderate (S . 0.7), even up to quite substantial strains of several hundred percent.
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Importantly, though, the unit cell model predicts sizable non-affine deformations of the local

packing structure, beyond the pure shear-alignment effect. For example, we find for the strain

dependence of the tube radius:

R(γ)/R(0) ∼ 1 + bRγ2 . (5)

Here and in the following, we use the script typeface to discriminate the quantities calculated

from the unit-cell model from the above BCA estimates. An important difference between them,

even if no shear is applied, is that the BCA conventionally considers a straight tube, whereas the

unit-cell model allows tubes to bend if this lowers the total equilibrium free energy, which balances

contributions from confinement and bending. In Section 4, we find that the average tube width

thereby grows by a factor R(0)/R ≈ 1.4 in the quiescent solution, and even further, with the

coefficient bR ≈ 0.14, upon shearing. The comparison of Equations (4) and (5) thus suggests that

the nonlinear shear-softening of entangled polymer solutions and the associated rheological stresses

are predominantly caused by non-affine tube deformations with only minor contributions from shear

alignment. In view of the above-established flattening of S(γ) at large strains, this statement is likely

to hold beyond the range of validity of the asymptotic result in Equation (5).

Similarly, we can use the unit-cell model to quantify how shearing affects tube bending. For the

mean curvature of the tube backbone we find for small deformations:

C(γ)/C(0) ∼ 1 + bCγ2 . (6)

with C(0) ≈ 1.4(LpLe/2)−1/2, where (LpLe/2)−1/2 is the mean curvature of a wormlike chain

confined to a straight tube segment of length Le/2, the coefficient bC ≈ 0.037 is obtained. Its small

positive value indicates that, on average and for moderate strains, the effect of filament buckling

slightly exceeds that of filament stretching.

The average curvature of the tube can also be quantified by a tube persistence length lt,

conveniently inferred from the Odijk relation Le
3

= 43R
2
lt between entanglement length and

tube width [49]. For a straight tube, lt is equal to the bare intrinsic persistence length Lp of the

enclosed test polymer. However, as already pointed out above, the unit cell model predicts a

substantial renormalization, even without shear, because it allows the tube to bend spontaneously to

minimize the unit-cell free energy, in qualitative accord with the persistence-length renormalization

due to molecular crowding found in recent model simulations [50]. Quantitatively, we find

lt(0) = [R/R(0)]2Lp ≈ 0.56Lp, in line with our above finding C(0) ≈ 1.4(LpLe/2)−1/2, which

can thus be rewritten as C(0) ≈ (lt(0)Le/2)−1/2. Our own simulations cannot reach high enough

densities to make this effect discernible. If we extend the Odijk relation to the case of a sheared

solution, namely Le(γ)2 = 43R(γ)2lt(γ), and replace Le(γ) by its equilibrium value Le (which is

a good approximation for moderate strains), we find for the renormalization of the tube persistence

length under shear

lt(γ)/Lp ∼
[

R/R(γ)
]2

=
[

R/R(0)
]2
(1 + bRγ2)−2 . (7)

So, some polymers stretch and others buckle upon shearing, but, overall, buckling wins and the

average tube persistence length decreases, in line with the increasing curvature, found above.

A more comprehensive characterization than by mean values is possible by statistical

distribution functions. In contrast to the marginal effects that we obtained from tube alignment,

above, we now find the distributions to be quite sensitive to the non-affine shear deformations

predicted by the unit-cell model. Rephrasing the result in terms of the reduced tube-radius

distribution pγ(r) = R(γ)Pγ[rR(γ)] yields a master curve onto which the appropriately normalized

experimental data should collapse, independently of the actin concentration. For the curvature

distribution, we apply the same procedure to arrive at a reduced curvature distribution pγ(c).

The predicted influence of shear on the master curves corresponding to pγ(r) and pγ(c) is

illustrated in Figure 2. It reveals that pγ(r) develops broad tails at small arguments as the strain
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γ increases, whereas pγ(c) becomes more sharply peaked around its average (normalized to 1) and

develops a tail at large arguments. The emergence of the tails can be traced back to so-called hairpin

conformations (thermodynamically suppressed strongly contorted unit cell configurations [20,21]),

as schematically sketched as insets in Figure 2. They are pulled tight under shearing, which accounts

for the increasingly bimodal structure developing for large strains γ in both distributions, but is found

to have only negligible impact onto the mean tube parameters.
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Figure 2. How shear affects packing structure in the unit-cell model [21]. In contrast to the most

probable tube conformations, rare hairpin configurations are buckled and pulled tighter by increasing

shear (as sketched in the insets). They are responsible for the tails emerging upon increasing strain

γ in the concentration-independent master curves of the reduced probability distribution functions

(a) pγ(r) ≡ R(γ)P[rR(γ)] for the tube width and (b) pγ(c) ≡ C(γ)Pγ[cC(γ)] for the tube curvature.

2.3. Experiments and Simulations

The details of our simulations and experiments can be found in Section 4. Briefly, the simulations

use a hybrid Monte-Carlo/Brownian-Dynamics algorithm, developed by Ramanathan and Morse [51–53],

who kindly provided us with the source code of their program, to sample over topologically allowed

states of a solution of wormlike chains. In this algorithm a sequence of Monte-Carlo steps, which

respect the mutual uncrossability of colliding chains, is drawn from the stochastic dynamics of

each chain, as obtained by solving a corresponding Langevin equation. The polymers were given

a preferential orientation at initialization, i.e., before the uncrossability constraints and Brownian

motion were switched on.

In the experiments, the thermal motion of a fluorescently labeled actin filament in the meshwork

of unlabeled neighbor filaments is tracked over a fixed time span, long enough to identify the shape of

the confinement tube. Two different setups were used to prepare the samples: a large micro chamber

and a narrow capillary yielding almost isotropic and nematically ordered solutions, respectively.

Varying the polymer concentration, this approach provides the dependence of the tube width on

the alignment strength S, because the flow-induced ordering depends on the concentration—denser

solutions yielding stronger alignment, see Figure 3b. The measured relation between the average

tube width and alignment displayed in Figure 3a is consistent with the simulations and the

BCA-prediction.

Beyond the mean tube width, we also measured the distribution of tube widths. As shown in

Figure 4, the rescaled data for all concentrations and S-values fall on a master curve, as predicted by

the extended BCA.
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Figure 3. Nematic alignment and tube deformation. (a) Dependence of the mean tube radius

R on the nematic order as predicted by the binary-collision approximation (BCA) calculation,

Equation (2), and the unit-cell model. The four experimental data points correspond to four different

F-actin concentrations c. Our Monte-Carlo/Brownian-Dynamics (MC/BD) simulations of pre-aligned

polymer solutions and F-actin experiments show no sign of the strong strain-induced tube dilation

predicted by the unit-cell model but agree with the BCA predictions for moderately pre-aligned tubes,

corresponding to shear alignment by a strain of about γ = 1.5 . . . 2.5. We interpret this as an indication

that the average tube deformations had mostly relaxed between the cessation of shear and the start of

the measurements, while the inflicted shear alignment was largely conserved. Note that the statistical

errors of the tube size is very small (≈ 1 %) for both the experiments and the simulations; (b) Polymer

solutions were prepared in two different sample geometries for each c, a narrow capillary and a wider

micro chamber, to get strongly sheared networks and weakly sheared reference samples, yielding

values for R(S) and R(S ≈ 0), respectively. Their ratio is shown in panel (a) against the values for S

in the capillary.
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Figure 4. Reduced tube-width distribution: differently prepared F-actin experiments collapse onto

a single master curve p(r) = RP(rR), independent of both concentration and the degree of nematic

order of the solution. The scaling and the shape of the equilibrium master curve, Equation (12), are

predicted by the tube model, evaluated in the binary-collision approximation (BCA). Its deformation

due to shearing is estimated using the unit-cell model. Small deviations between the data and the

equilibrium theory are consistent with the predicted effect of a remnant strain γ = 1.5 (dashed lines)

and interpreted as indicative of long-lived deformations of rare hairpin configurations.
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2.4. Comparison of Theory and Data

Our theoretical, experimental, and numerical findings all suggest that moderate tube-segment

alignment only weakly influences the tube size and its distribution and therefore excite only weak

restoring stresses. Curiously, all our experimental data seem to fall into regime of moderate

alignment, up to S ≈ 0.5 where the tube radius is almost independent of S, cf. Figure 3.

The experimental data support the predictions obtained from both the simulations of the prealigned

fiber solutions and the affine phantom model and BCA prediction: the detected alignment is

compatible with an average tube width equal to its equilibrium value.

The shear strain γ imposed on the actin solution cannot directly be controlled, in our setup,

but from the recorded filling speeds of the capillary, it should be similar for all analyzed actin

concentrations. By the time of the measurement, the solution was no longer actively sheared, only

the final shear strain was maintained. According to Equation (3), the observed weak alignment

corresponding to nematic order of strength S ≈ 0.4 . . . 0.7 is consistent with remnant shear strains

γ ≈ 1.5 . . . 2.5 and reflects the predicted difficulty to achieve any stronger shear alignment with such

strains. At the same time, the measured tube-radius data show no sign of the sizeable increase of

the mean tube radius R(S) predicted by the unit-cell model as a consequence of tube deformations.

A plausible explanation could be that the tube deformations had already been undone by the

associated restoring stresses at the time of the measurements, whereas the negligible restoring stresses

associated with the experimentally observed moderate tube alignment allowed the latter to persist.

Indeed, having no discernible effect on the tube conformations, these stresses should not appreciably

exceed the thermal energy per tube volume.

Another effect on the packing structure that should arguably be long-lived and experimentally

detectable is the change in the tube-width and curvature distributions caused by the shearing

of hairpins (Figure 2). Hairpin configurations are topologically prevented from relaxing into

more typical configurations without first disentangling from their tubes. They are preserved and

even stabilized upon shearing, and their effects onto the shapes of the tube-width and curvature

distributions are independent of the average values of the tube width and curvature. Hence, they

also should relax on a very slow time scale, and their deformation by shear and its characteristic

fingerprint in the distributions in Figure 2 (relative enhancement of the fraction of small tube radii

and large tube curvatures) should be largely preserved after cessation of shear, when the average

tube width and curvature have already relaxed. Indeed, as demonstrated in Figure 4, the frequency of

small tube widths is found to be increased compared to the prediction of the equilibrium model (solid

lines). Excellent agreement of theory and data for the tube-width distribution is obtained by choosing

a plausible value for the remnant strain γ = 1.5, consistent with the observed tube alignment in

Figure 3, according to Equation (3). Despite this very favorable agreement, some issues remain to

be resolved. Our computer simulations seem to indicate a tendency of the BCA to systematically

underestimate the fraction of narrow tubes, even in equilibrium solutions (Figure 5 of the methods

section). A thorough investigation of this issue is currently hampered by computational limitations

and experimental difficulties. The measured tube width distributions have a tendency to weakly

broaden within the observable finite-time windows, presumably because the ideal limit of strong

entanglement is difficult to achieve in practice (especially in computer simulations).

3. Conclusions

The mechanical properties of entangled solutions of semiflexible polymers depend crucially

on the response of the mesoscopic architecture to external perturbations. We have analyzed

the impact of two such perturbations: an imposed affine nematic odering and a proper shear

deformation that induces a similar degree of nematic alignment but also additional, non-affine

strains. By measuring the tube-shaped cages of labeled test polymers after cessation of shear,

we found that initially isotropic solutions developed moderate nematic order by shear alignment,

which persisted after the shearing had stopped. Besides this shear-alignment, which is comparable
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to what one would expect from a purely affine model, shearing was predicted to cause non-affine

local tube deformations (Figure 3) and leave a characteristic fingerprint in the tube-width and

backbone-curvature distributions (Figure 2). We estimated both effects using the unit-cell approach

by Fernández [21]. We could not detect the expected average tube deformations, experimentally,

presumably because they had been driven back by the associated restoring forces, at the time of

measurement. However, our data for the reduced tube-width distribution could well be fitted by

the unit-cell model, assuming a finite remnant strain consistent with the observed tube alignment

(Figure 4). The theory identifies a small fraction of topologically protected hairpins as the main

source of the observed deviations from the equilibrium distributions. Similarly, literature data for

the microstructure of F-actin solutions [17,54] seem consistent with a sizeable influence of shear on

the curvature distribution pγ(c), although the very large strains imposed in Reference [17] prohibit

a direct comparison.

In summary, our experimental and numerical data can be reconciled with the predictions of

the unit-cell model if one accepts that the predicted average tube dilation and tube buckling upon

shearing is energetically costly and relaxes quickly, so that it is not detectable after cessation of shear,

whereas moderate tube alignment and hairpin deformations induce no sizeable (global) stresses and

are therefore longer-lived, hence detectable. With this interpretation, our comparison of theory and

experiment yielded consistent results but calls for further investigations. It would be particularly

interesting to test the predicted faster relaxation of the average tube width and curvature as opposed

to the shear alignment and hairpin effects with a higher time resolution as possible in our setup.

A careful analysis of the evolution of curvature distributions upon application of finite large strains

would also be very desirable.

4. Materials and Methods

4.1. Experiments

Actin was isolated from rabbit skeletal muscle, purified, and polymerized following standard

procedures [48] to gain F-actin solutions of polymer concentrations c in the range from 0.2 to

0.8 mg/mL. These values correspond to dimensionless polymer length concentrations ρLp ≈ 2300

to 9200, based on the typical value Lp = 17 µm of the persistence length and the estimate

ρ/c ≈ 40 µm−2/(mg/mL) obtained from the molecular structure of the actin filaments [43].

The filaments were labeled with TRITC-Phalloidin (Sigma Aldrich, Taufkirchen, Germany)

and mixed gently with unlabeled filaments at a ratio of 1:1000. We used two different sample

geometries for each concentration, a narrow capillary (0.1 mm × 2 mm × 50 mm, CM Scientific Ltd.,

West Yorkshire, UK) and a large chamber (8 mm × 8 mm × 5 mm, Lab-Tek Chambers, Nalge Nunc

International, New York, NY, USA), yielding nematically ordered and almost isotropic polymer

networks, respectively. Two-dimensional confocal microscope (LSM510, Carl Zeiss, Jena, Germany;

objective C-Apochromat 63x/1.2 W korr; 543 nm laser and long pass filter 560 nm) images of a

fluorescently labeled filament were recorded every second during a time span of 150 s, superimposed,

and analyzed to measure the tube width, i.e., the space explored by the fluctuating polymer, similar to

previous studies [48]. Due to the large number of data points that we collected, the statistical errors

for the mean tube width, as obtained from a standard Jackknife method, are on the order of 1 %.

Filament orientations (i.e., order parameters) were obtained from three-dimensional stacks of images

with voxel sizes chosen according to optical resolution and Nyquist’s sampling theorem.

4.2. Simulations

We use a hybrid Monte-Carlo/Brownian-dynamics algorithm proposed by Ramanathan and

Morse [51–53] to simulate networks of entangled wormlike chains that have zero thickness but

can not cross each other. The Brownian dynamics of each bead-rod polymer in the solution is

computed by numerically integrating the corresponding Langevin equations. Each time step a trial
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move is computed for one randomly chosen polymer and steric interactions between filaments are

implemented by rejecting the trial move if it would lead to a cut through a neighbor filament.

To mimic the shear alignment observed in the experiments we implement nematic order in the

simulations by an external field −h cos(γ) that favors nematic alignment with an external director.

The field acts during the initialization phase when the polymers are generated and placed in the

simulation box in their free equilibrium states. After the system is initialized, the field is turned off

and the system evolves thermally— similar to what happens in experiments right after preparation.

At the end of each simulation run, we measure the order parameter

S =
1

2Nrod

Nrod

∑
i=1

(3 cos2 θi − 1) (8)

of the network by averaging the orientations of the Nrod polymer segments. The direction of each

polymer segment is characterized by the angle θi between a rod that connects two neighboring

monomer beads and the externally imposed director. Following Reference [52], we determine the

time-dependent tube radius R(t) from the reptation-corrected MSD,

R(t)2 =
1

N(T − t)

N

∑
i=1

∫ T−t

0
dt̃ di(t̃, t̃ + t)2 , (9)

where N is the number of molecules, T the total simulation time, and di(t̃, t̃ + t) gives the

closest approach between the chain’s middle bead at time t̃ + t and the contour of this chain at time t̃.

The S-dependent equilibrium mean tube radius R(S) is then obtained assuming that R(t) = R(S) f (t/τe)

can be written in terms of a universal scaling function f [51], where the so-called entanglement time

τe ∝ R(S)8/3 itself depends on the mean tube width.

The data shown in Figure 4 were obtained for solutions that contained 1296 chains of length

L = Lp in a cubic simulation box of edge length 1.2L, yielding a dimensionless polymer length

concentration of ρL2
p = 750 and an entanglement length on the order of Le ≈ 0.2Lp according to

Equation (11). The simulation time was set to one half the rotational diffusion time of a straight rod of

length L, which corresponds to about 40τe for the used polymer concentration. The measured order

parameter S was found to remain almost constant during the whole simulation time.

Figure 5 compares the reduced distribution of the tube widths obtained from isotropic solutions

of various concentrations with the BCA prediction.

10−0.2 100 100.2
10−2

10−1

100

r

p
(r
)

ρL2
p = 5000

ρL2
p = 16000

ρL2
p = 32000

BCA

Figure 5. Reduced tube-width distribution obtained from the hybrid Monte-Carlo/Brownian-

dynamics computer simulations [51–53]. As expected from the BCA prediction, data for various

polymer length concentrations ρ collapse onto a single master curve.
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4.3. Binary Collision Approximation (BCA)

We tackle the complicated many-body problem of an entangled network of semiflexible

polymers using the binary collision approximation (BCA) [43], which can easily be extended to

nematically ordered networks. A representative test polymer is modeled as a wormlike chain (WLC)

of persistence length Lp. Its collisions with other polymers in the solution are accounted for as

far as these can be represented by independent pair interactions. Collective many-body effects

are summarily included on a mean-field level by confining all polymers to cylindrical harmonic

cages by adding a term φr2
⊥/2 to the WLC-Hamiltonian. Balancing the bending and confinement

free energy contributions, the tube radius, defined as the average transverse displacement

R
2
≡ (2L)−1

∫ L
0 ds〈r2

⊥(s)〉 of the test chain, and the entanglement length Le ≡ φ−1R
−2

, which

characterizes the mean distance between tube–tube collisions along a tube backbone, follow from

a straightforward calculation as

R = 2−3/4L−1/8
p φ

−3/8
and Le = 23/2L1/4

p φ
−1/4

, (10)

respectively. It was proposed by Morse [43] that the mean tube strength φ can be determined

self-consistently within the BCA as an average over all possible polymer–polymer configurations.

The strategy is to describe the steric interaction of two colliding chains in the solution as a function of

the size of the tube each chain is confined to. The calculation is eventually closed by identifying

the average of the so obtained pair interaction as the mean-field tube potential. More precisely,

the collision geometry of the two polymer segments that fluctuate around their straight primitive

paths is described in terms of their relative orientation and separation x (i.e., their closest approach).

The strength φ±(x) of the harmonic confinement potential is obtained as the second-order Taylor

coefficient of the potential of mean force F±(x) (“BCA potential”), φ±(x) ∝ ∂2
xF±(x). The latter

is of pure entropic origin and given as the negative logarithm of the partition sum of a pair of

polymers, each dressed by its own tube, in either a topologically open (subscript “+”) or entangled

(“−”) configuration. (See also the sketch in Figure 2 of Reference [44].) This differentiation is

necessary, because the number of states for two bendable polymers is not completely determined

by the positions and orientations of their primitive paths, as it would be the case for straight rigid

rods [48]. From the average over all colliding segment pairs one obtains the relation φ = α0ρ/R that

links φ to the polymer contour-length concentration ρ and the mean tube radius R. Together with

Equation (10), this procedure yields the self-consistent BCA solutions

R = (4α0ρ)−3/5L−1/5
p and Le = (α0ρ/8)−2/5L1/5

p (11)

of the mean tube radius and the entanglement length, respectively, with a numerical coefficient

α0 ≈ 0.50 [44].

In Reference [44,48], the above theory for an average tube was generalized to the so-called

segment-fluid approximation that gives access to the distribution P(φ) of tube strengths, which

can vary along the test chain. Its predicted statistics of tube-radius fluctuations was found to

be in good agreement with experimental data, allowing for a decent global fit for various actin

concentrations. The central idea behind the segment-fluid model is to introduce a canonical ensemble

of N + 1 independent entanglement segments of length L, each dressed by an individual tube

associated with its own value of φ. The segment-averaged mean field φ felt by the test polymer

as a whole, is thus obtained as an average over the N collision partners. In general, any higher

order moment φk can be computed similarly, to estimate the complete tube-strength distribution P(φ).

Glaser et al. [44,48] showed that the distribution P(φ) can be approximated to very good accuracy by

a Gamma distribution with mean φ = α0ρ/R and variance φ2 − φ
2
= β0ρ/(LR

3
), where β0 ≈ 0.094.

Within the tube-segment approach, the relation between network-averaged tube width and tube

strength, given by Equation (10), is replaced by a similar relation for the fluctuating quantities R
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and φ, which allows to convert P(φ) directly into the tube-width distribution P(R). Rescaling the

tube radius by its mean, a concentration-independent scaling form of the distribution [44]

p(r) = RP(rR) ∝ r−19.1e−6.11r−8/3
(12)

ensues. Here, the magnitude r2 = R2/R
2

of the fluctuations is completely determined by the value

of the combination (L/Le)α0/β0, and the scaled length L/Le ≈ 1.3 of the tube segment is obtained

by comparing r2 with a corresponding fluctuation-response estimate, which is derived for a polymer

exposed to an external force that is self-consistently identified with the confinement force. The latter

calculation reveals that L/Le itself depends only on the ratio α0/β0. Following the same lines that lead

to the tube-width distribution, we can use the local version of Equation (10) to derive the distribution

P(Le) of the entanglement length from P(φ). Again, one obtains that the reduced distribution

p(le) = LeP(leLe) depends only on the value of (L/Le)α0/β0 and takes the universal form

p(le) ∝ l−28.0
e e−6.14l−4

e . (13)

We now extend the BCA to nematically ordered polymer solutions, characterized by the standard

order parameter as defined in Equation (1). Repeating the calculations outlined in Reference [44] with

this generalized orientational segment distribution, we find that the mean φ and the variance φ2 − φ
2

of the tube strength take the same form as their isotropic-solution analogs, given in the text above

Equation (12), but now with the functions

α(S) = α0 I(S) and β(S) = β0 I(S) , (14)

that replace the numerical coefficients α0 and β0, respectively, which yields the expressions for the

mean tube radius and the mean entanglement length given in Equation (2). Here,

I(S) = (4/π)
∫

du1du2 fS(u1) fS(u2)|u1 × u2| (15)

denotes the normalized packing entropy of the solution. For low nematic order, S ≪ 1,

the distribution fS(u) can be expanded up to linear order in S, for which the asymptotic

proportionality I(S) − 1 ∝ S2 + O(S3) follows from the normalization of fS(u) and the definition

of S. It reveals that I(S), and thus R(S), varies only weakly with S, as long as the solution is

not too strongly ordered. To make these dependencies more quantitative, we have to specify the

distribution function fS(u). Since we expect its exact functional form not to be crucial, we choose

Onsager’s trial function fa(θ) = a cosh(a cos θ)/(4π sinh a) that was originally applied to solutions

of rigid rods [45] and covers the wanted generic features of the distributions. Here, a is related to

the order parameter via S = 1 − 3a−1 coth a + 3a−2, and θ = cos−1(u · d) is the angle between the

direction of the tube segment and the nematic axis. As shown by Onsager, this trial function yields

I(S) = 2 I2(2a)/ sinh2 a, where I2 denotes the modified Bessel function of the first kind. Replacing α0

in Equation (11) by its order-dependent extension α(S), Equation (14), we obtain Equation (2) for the

mean tube radius and entanglement length of the nematically ordered system, where the weak-order

asymptotics in Equation (2) follow from S ∼ a2/15 together with I(S) ∼ 1 − a4/360.

4.4. Affine Strain Alignment

To estimate the tube-segment orientation in a sheared solution, we consider a solution of straight

inflexible (phantom) rods that follow an externally applied shear strain γ affinely. We describe
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the latter in terms of the deformation matrix Λγ, so that the initial distribution f0(u) of the rod

orientations u is changed to

fγ(u) =

∣

∣

∣

∣

duγ

du

∣

∣

∣

∣

−1

fa[u
−1
γ (u)] , with uγ(u) =

Λu

|Λu|
, (16)

where uγ : Sd−1 → Sd−1, as well as its inverse u−1
γ (u) = Λ−1u/|Λ−1u|, is an automorphism of the

sphere of dimension d − 1. Since the expressions for d = 3 become quite lengthy, we first start with

d = 2, which already illustrates how shearing induces nematic ordering.

4.4.1. Two-Dimensional Solution

In two dimensions, the direction u = (cos ϕ, sin ϕ) of a rod in the solution depends only on the

angle ϕ between u and the x-axis. Applying the simple shear deformation

Λ =

(

1 0

γ 1

)

(17)

of strain γ, the particle orientation becomes uγ = (cos ϕγ, sin ϕγ) with

ϕγ = arctan

(

γ cos ϕ + sin ϕ

cos ϕ

)

(18)

If we assume the system to be isotropic before the deformation, f0(ϕ) = 1/(2π), we obtain a

shear-induced dependence

fγ(ϕ) =
1

2π

∣

∣

∣

∣

dϕ−γ

dϕ

∣

∣

∣

∣

=
1

2π

sec2 ϕ

1 + (γ − tan ϕ)2
(19)

of the angular distribution function on ϕ. As γ increases, fγ(ϕ) turns into a double-peaked

distribution for the ordered system, as illustrated in Figure 1b. The nematic order parameter

S(γ) = 2λ1 − 1, associated to the distribution fγ, is determined by the largest eigenvalue λ1 of the

second-rank ordering tensor

∫

dϕ fγ(ϕ)uu =
1

4 + γ2

(

2 γ

γ 2 + γ2

)

, (20)

which yields

S(γ) =
γ

√

4 + γ2
, (21)

shown in Figure 1a. The corresponding eigenvector gives the director

d(γ) ∝

(

√

4 + γ2 − γ

2

)

(22)

(or nematic axis) of the nematic solution.

4.4.2. Three-Dimensional Solution

Simple shear of the form

Λ =







1 0 0

0 1 0

γ 0 1






(23)



Polymers 2016, 8, 353 14 of 20

leaves the azimuthal angle ϕγ = ϕ at its initial value and changes the polar angle as

θγ = arccos





cos θ + γ cos ϕ sin θ
√

sin2 θ + (cos θ + γ cos ϕ sin θ)2



 . (24)

This leads to the strain-dependent angular distribution

fγ(ϕ, θ) sin θ =
1

4π

∣

∣

∣

∣

∂(ϕ−γ, θ−γ)

∂(ϕ, θ)

∣

∣

∣

∣

sin θ−γ

=
2 sin θ

π

[

4 + γ2 − γ2 cos(2θ)− 2γ2 cos(2ϕ) sin2 θ + 4γ cos ϕ sin2(2θ)
]−3/2

(25)

of an initially isotropic three-dimensional solution, f0 = 1/(4π). Note that fγ(u) is not axially

symmetric with respect to the director d, but is characterized by biaxial order, which is typically

quantified in terms of the second-rank ordering tensor. For our purpose, however, it suffices to

estimate the degree of shear-induced alignment by the scalar order parameter S as follows. For given

strain γ, it exhibits a maximum at {ϕ∗
γ, θ∗γ} with ϕ∗

γ = 0 and

θ∗γ = arctan

(

1

2

√

4 + γ2 −
γ

2

)

, (26)

thus determining to the director d(γ) = (sin θ∗γ, 0, cos θ∗γ), which exactly corresponds to Equation (22)

for the director of the sheared two-dimensional solution. As the distribution fγ(ϕ, θ) is not

rotationally symmetric with respect to d(γ), an analytical expression for S(γ) cannot be derived.

For small deformations, however, one obtains

∫

dϕ fγ(ϕ)uu ∼
1

3
1+

γ

5
(e1e3 + e3e1) (27)

to linear order in γ, where e1 and e3 denote the unit vectors parallel to the x and z axis,

respectively. From its largest eigenvalue λ1 = 1/3 + γ/5 we obtain the linear scaling relation for

S(γ) = (1/2)(3λ − 1), given in Equation (3). In Figure 1, this asymptotic relation is compared with

the numerically obtained S(γ), which reveals that it provides a good approximation up to γ ≈ 1.

4.5. Unit-Cell Approach

The non-affine tube deformation caused by a macroscopically imposed simple shear deformation

is estimated using the unit-cell approach by Fernández et al. [21]. Namely, we minimize the free

energy of a test tube clamped between two neighbor tubes that change their positions affinely with

the applied strain γ, thereby exerting a force on the test tube, which bends accordingly. To treat

large polymer deformations exactly, the polymer segment is modeled as an Euler-Bernoulli beam.

Then, the tube backbone contour is obtained for strains γ up to ≈ 2 by solving the equation of

elastica with forces acting on the collision points between the test tube and its confining neighbors.

Assuming that the deformation happens in a quasi-static fashion, lateral friction is neglected and the

test polymer remains equilibrated in its tube. The value of the constraining forces is determined by

minimizing the test tube’s free energy comprising bending and confinement contributions. Following

Reference [21], Figure 6 illustrates the “test tube” of the unit-cell model clamped between two

neighboring tubes. Affine shearing of the polymer solution translates to an affine displacement of

the confining tubes (whether the centers or contact points with the test tube are displaced does not

matter much). Due to the mutual balance of enthalpic (backbone bending) and entropic (tube size)

contributions to the free energy, shearing induces a strongly non-affine local polymer deformation,

in this model. Averaging over a representative set of shear geometries, the deformation results in a
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dilation of the tube upon shear, which gives rise to a nonlinear softening at large strains, for a broad

range of polymer concentrations and initial (equilibrium) tube conformations.

1
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Figure 6. Unit-cell model by Fernández et al. [21]. (a) The test tube is deformed by two confining tubes

(Sketch adapted from Reference [21]); (b) The zero-strain values of the average tube radius R(γ = 0)

and the mean curvature C(γ = 0) varies with the unit-cell conformation, which is characterized by

the deflection xc0. Shearing of the network is mimicked by an affine displacement of the contact

points with (or centers of) the confining tubes. There is a trade-off between bending and confinement,

since a more strongly bent conformation allows for a wider tube, which, on average, gives rise to a

strain-induced tube dilation and bending, quantified by (c) the average tube radius R(γ) and (d) the

mean curvature C(γ) with strain γ; (e) The total free energy F (γ) increases upon shearing as required

by mechanical stability. All curves were computed numerically from the full non-linear theory.

For moderate shear deformations, the model equations can be linearized and solved analytically.

Starting point is the deflection xc +R of the tube backbone due to the force f between the colliding

tubes, as given by Equation (9a) of Reference [21]. For small y2
c f /Lp, where 2yc is the distance between

the tube–tube collisions along the backbone (see the sketch in Figure 6), the deflection becomes

xc +R ∼ y3
c f /(3Lp), which serves as a relation for the modified tube radius R. Note that positive

deflections xc > 0 correspond to hairpin conformations. This yields the total free energy as the sum

F ∼ y3
c f 2/(6Lp) + L−1/3

p yc[(2/3)y3
c f /Lp − 2xc]

−2/3 (28)

of the linearized bending free energy, i.e., expanded to lowest order in f , and the confinement free

energy. Within the linearized theory, the lateral deflection xc +R ∼ y3
c f /(3Lp) is varied to minimize

F , so that the tube-deforming force f is determined by the equilibrium condition ∂ fF = 0. If the

backbone is only weakly bent, y3
c f /(Lp|xc|) ≪ 1, this condition can be expanded to

10y3
c f

9Lp|xc|
∼ −1 +

√

1 + (10/27)(4R/|xc|)8/3 . (29)
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Inserted into the expression for the tube radius, we obtain its strain dependence R(γ)/R(0) ∼

1 + bRγ2, Equation (5), with the zero-strain value

R(γ = 0)/|xc0| ∼
7

10
+

3

10

√

1 + (10/27)(4R/|xc0|)8/3 , (30)

where xc0 and yc0 denote the collision coordinates for the unsheared solution. Following Reference [21],

we here set yc0 = Le/2 and used that Le = 4L1/3
p R

2/3
, according to Equation (10). Besides the width

of the tube, we characterize its conformation in terms of the mean curvature C, defined through

the average

C
2
≡

1

2yc

∫ yc

0
ds [r′′(s)]2 (31)

along the backbone contour r(s) of the tube segment. Note that ycLpC
2

is nothing but the bending

energy of the tube segment (in natural units) as it appears in the unit-cell model. With the

weak-force scaling of Equation (29), a similar calculation as for R(γ) yields the asymptotic scaling

C(γ)/C(0) ∼ 1 + bCγ2, Equation (6), with

C(γ = 0) ∼
9|xc0|/R

20
√

6LpLe

[

−1 +
√

1 + (10/27)(4R/|xc0|)8/3

]

. (32)

Comparing the asymptotic scaling relations with the numerically solved full model, we find

the quadratic strain dependencies in Equations (5) and (6) to be in good agreement with the full

model. However, as the above weak-force criterion does not hold for typical model parameters,

the zero-strain values R(γ = 0) and C(γ = 0) and the coefficients bR and bC obtained from the full

model can deviate substantially from their asymptotic estimates given here. Their dependence on

the ratio xc0/R between the unperturbed tube deflection and the width of a straight equilibrium

tube is shown in Figure 6. With xc0 = −R, for instance, we have y3
c f /(Lp|xc0|) ≈ 2 and,

consequently, the asymptotic solutions R(γ = 0) ∼ 1.9R and C(γ = 0) ∼ 0.39(LpLe/2)−1/2 of

the linear model markedly differ from the numerically obtained predictions R(γ = 0) ≈ 1.3R and

C(γ = 0) ≈ 1.4(LpLe/2)−1/2 of the full model, see Figure 6b. Notably, bC can actually become

negative as illustrated in Figure 6d.

We note that we quantify the geometry of the straight tube by means of the BCA predictions for

R and Le, given in Equation (11), whereas the entanglement length in Reference [21] was defined as

Le = (Lp/φ)1/4, which differs from Equation (10) by the numerical prefactor 23/2. The slightly larger

values for Le and yc0 used here have consequences for both the geometry and stability of the ground

state of the unit cell, as described so far, which predicts an instability against shearing when the aspect

ratio |xc0|/yc0, or, equivalently, the ratio |xc0|/R, exceeds a certain threshold value. In this regime the

total model free energy decreases upon straining, as the test tube is widened to an unrealistically

large volume that violates the constraint set by the imposed polymer concentration. As shown

in Reference [21], this artifact of the simplified unit-cell geometry can be cured by accounting for

the so-called “Doi–Kuzuu effect” [55], which relates the number of contacts between the tubes to

the applied deformation. Upon large deformations, the test tube makes new lateral contacts with

previously spatially separated tubes, which limits the lateral expansion to physically reasonable

bounds and can effectively be accounted for by a renormalization of the unit cell parameters as a

function of the strain. With this important amendment, the ground state is always stable and robust

to moderate parameter changes. The resulting strain-dependent tube radius, curvature, and (clearly

stable) total free energy are depicted in Figure 6, using typical values Lp = 17 µm and ρ = 20 µm−2 for

the persistence length and the polymer length concentration, respectively, in Equation (11). The latter

correspond to semi-dilute F-actin solutions of concentration c = 0.5 mg/mL, based on the estimate

ρ/c ≈ 40 µm−2/(mg/mL) obtained from the molecular structure of the actin filaments [43].
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It is worth noting that the Doi–Kuzuu effect affects so-called hairpin configurations

(thermodynamically suppressed strongly contorted unit cell configurations [20,21]) differently from

the typical configurations. We keep track of this by the factor −xc/|xc| in the second term of the

differential equation

y′c(γ) = yc0λ′
y(γ)− 4(xc/|xc|)(y

2
c R/ξ2)λ′

x(γ)− 4(y2
c/ξ2)R′(γ) (33)

that determines the longitudinal deformation of the unit cell (Equation (18) of Reference [21]).

The first term on the right hand side represents the affine stretch by a factor λy(γ), the last

term corrects for the volume change of the unit-cell due to tube dilation/contraction. The second

term accounts for the transversely approaching/distancing of the tube segments that follow the

stretch factor λx(γ), which effectively decreases/increases the distance 2yc between the collision

points. For a hairpin configuration, characterized by xc > 0, neighboring tubes are pushed aside,

corresponding to an increasing yc. It should also be noted that, apart from this topological distinction,

the correction is of mean-field type. This restriction could tend to iron out a physically meaningful

heterogeneous response of the polymer (tube) network. Beyond the mean-field approximation,

unstable unit-cells might still exist locally and give rise to spontaneous network heterogeneities

(without invoking any enthalpic attractions or crosslinkers). In a stationary shear flow, these might

play an important role for the nucleation of shear bands, a phenomenon that is known to occur in

densely entangled solutions of flexible polymers [56] and that was recently observed for entangled

F-actin solutions [16]. It would be interesting to see, whether such effects could be grasped with the

theory by pushing the treatment of the Doi–Kuzuu effect beyond the mean-field approximation.

Finally, we estimate the non-affine contributions to the nematic order parameter S, within the

unit-cell approach. Unfortunately, finding the exact deformation field from the complex response of

the tube backbone is not a straightforward task. To simplify the computation, we therefore follow

Reference [21] and consider only a discrete set of test-tube segments with orientations along the three

main stretch directions or principal axes of the simple shear deformation. Under the assumption

that the average tube deformation can be described by a deformation tensor Λγ = Λa
γ + Λn

γ

that we decompose into its affine and non-affine contribution, respectively, we can approximately

reconstruct the non-affine contribution Λn
γ from the three principle shear transformations. We first

relate these transformations for the stretching and compression along the principal axes of the affine

deformation with the lab-frame coordinates. We denote these principal directions (i.e., the normalized

eigenvectors of the affine Cauchy deformation tensor (Λa
γ)

TΛa
γ) by vi, and the corresponding

stretch factors (the eigenvalues) by λi. The index convention is that i = 1, 2, 3 represent the

stretch, compression, and neutral axis, respectively. Note that vi gives the direction before the shear

deformation and yields the orientation wi ≡ λ−1
i Λa

γvi after an affine deformation Λa
γ has been

applied. For a given point r0 in the lab frame, the model now takes its principal-axes coordinates vi · r0

before the deformation and computes its principal-axes coordinates wi · rγ at strain γ. With the above

introduced decomposition into an affine and a non-affine contribution to the deformation tensor,

rγ = (Λa
γ + Λn

γ) · r0, we obtain

wi · rγ = λivi · r0 + ∑
j

wi · (Λ
n
γ · vjvj · r0) . (34)

The unit operator 1 = ∑j vjvj was inserted to reintroduce the coordinates vj · r0. This equation

must be solved for the nine components of Λn
γ, which is indeed possible if we insert the end-to-end

vector of the tube segments for r0 and rγ and exploit the available information for all three principal

axes (i = 1, 2, 3). Here, another technical detail of the unit-cell model has to be taken into

account: fixing the (unperturbed) tube direction to vi yields two possible unit-cell conformations,

depending on the orientation of the trihedron built by the three principal axes. We average over

these two geometries to obtain the mean change of the tube segment orientation that we can
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use in Equation (34). With the full deformation tensor Λγ = Λa
γ + Λn

γ at hand, the non-affine

strain dependence S(γ) of the nematic order parameter is readily computed by applying the same

procedure as in Section 4.4 for the purely affine deformation. Combining S(γ) and R(γ) predicted

by the unit-cell approach, we eventually obtain the order-dependent mean tube radius R(S) that is

shown in Figure 1.

Acknowledgments: We thank David Morse for kindly providing us with the source code of the computer
simulations. We thank Roland Springer and Georg Dreissen for help with digital image processing
and Bernd Hoffmann, Erik Noetzel, Nils Hersch, and Lukas Bethlehem (all ICS-7) for actin purification.
We acknowledge support from the German Research Foundation (DFG) and Universität Leipzig within the
program of Open Access Publishing.

Author Contributions: Marc Lämmel and Klaus Kroy developed the theory; Marc Lämmel extended and
analyzed the simulations; Evelin Jaschinski and Rudolf Merkel conceived and designed the experiments;
Evelin Jaschinski performed the experiments; Evelin Jaschinski and Marc Lämmel analyzed the data.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

WLC Wormlike chain

BCA Binary collision approximation

MC/BD Monte Carlo/Brownian dynamics

References

1. Kollmannsberger, P.; Fabry, B. Linear and nonlinear rheology of living cells. Annu. Rev. Mater. Res. 2011,

41, 75–97.

2. Pritchard, R.H.; Shery Huang, Y.Y.; Terentjev, E.M. Mechanics of biological networks: From the cell

cytoskeleton to connective tissue. Soft Matter 2014, 10, 1864–1884.

3. Bausch, A.R.; Kroy, K. A bottom-up approach to cell mechanics. Nat. Phys. 2006, 2, 231–238.

4. Storm, C.; Pastore, J.J.; MacKintosh, F.C.; Lubensky, T.C.; Janmey, P.A. Nonlinear elasticity in biological

gels. Nature 2005, 435, 191–194.

5. Janmey, P.A.; McCulloch, C.A. Cell mechanics: Integrating cell responses to mechanical stimuli. Annu. Rev.

Biomed. Eng. 2007, 9, 1–34.

6. Kasza, K.E.; Rowat, A.C.; Liu, J.; Angelini, T.E.; Brangwynne, C.P.; Koenderink, G.H.; Weitz, D.A. The cell

as a material. Curr. Opin. Cell Biol. 2007, 19, 101–107.

7. Shin, J.H.; Gardel, M.L.; Mahadevan, L.; Matsudaira, P.; Weitz, D.A. Relating microstructure to rheology of

a bundled and cross-linked F-actin network in vitro. Proc. Natl. Acad. Sci. USA 2004, 101, 9636–9641.

8. Lieleg, O.; Claessens, M.M.A.E.; Bausch, A.R. Structure and dynamics of cross-linked actin networks.

Soft Matter 2010, 6, 218–225.

9. Kurniawan, N.A.; Enemark, S.; Rajagopalan, R. The role of structure in the nonlinear mechanics of

cross-linked semiflexible polymer networks. J. Chem. Phys. 2012, 136, 065101.

10. De Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979.

11. Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University: New York, NY, USA, 1988;

Volume 73.

12. Pearson, D.; Herbolzheimer, E.; Grizzuti, N.; Marrucci, G. Transient behavior of entangled polymers at

high shear rates. J. Polym. Sci. B Polym. Phys. 1991, 29, 1589–1597.

13. Mhetar, V.; Archer, L. Nonlinear viscoelasticity of entangled polymeric liquids. J. Nonnewton. Fluid. Mech.

1999, 81, 71–81.

14. Marrucci, G. Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule.

J. Nonnewton. Fluid Mech. 1996, 62, 279–289.

15. Graham, R.S.; Likhtman, A.E.; McLeish, T.C.B.; Milner, S.T. Microscopic theory of linear, entangled polymer

chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 2003,

47, 1171–1200.



Polymers 2016, 8, 353 19 of 20

16. Kunita, I.; Sato, K.; Tanaka, Y.; Takikawa, Y.; Orihara, H.; Nakagaki, T. Shear banding in an F-Actin solution.

Phys. Rev. Lett. 2012, 109, 248303.

17. Kirchenbuechler, I.; Guu, D.; Kurniawan, N.A.; Koenderink, G.H.; Lettinga, M.P. Direct visualization of

flow-induced conformational transitions of single actin filaments in entangled solutions. Nat. Commun.

2014, 5, 5060.

18. Falzone, T.T.; Blair, S.; Robertson-Anderson, R.M. Entangled F-actin displays a unique crossover to

microscale nonlinearity dominated by entanglement segment dynamics. Soft Matter 2015, 11, 4418–4423.

19. Gurmessa, B.; Fitzpatrick, R.; Falzone, T.T.; Robertson-Anderson, R.M. Entanglement density tunes

microscale nonlinear response of entangled Actin. Macromolecules 2016, 49, 3948–3955.

20. Morse, D.C. Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 3. Nonlinear Rheology.

Macromolecules 1999, 32, 5934–5943.

21. Fernandez, P.; Grosser, S.; Kroy, K. A unit-cell approach to the nonlinear rheology of biopolymer solutions.

Soft Matter 2009, 5, 2047–2056.

22. Morse, D.C. Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys. Rev. E 1998, 58,

R1237–R1240.

23. Semmrich, C.; Storz, T.; Glaser, J.; Merkel, R.; Bausch, A.R.; Kroy, K. Glass transition and rheological

redundancy in F-actin solutions. Proc. Natl. Acad. Sci. USA 2007, 104, 20199–20203.

24. Xu, J.; Tseng, Y.; Wirtz, D. Strain hardening of actin filament networks: Regulation by the dynamic

cross-linking protein α-actinin. J. Biol. Chem. 2000, 275, 35886–35892.

25. Semmrich, C.; Larsen, R.J.; Bausch, A.R. Nonlinear mechanics of entangled F-actin solutions. Soft Matter

2008, 4, 1675–1680.

26. Broedersz, C.P.; MacKintosh, F.C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 2014, 86,

995–1036.

27. Thorpe, M. Continuous deformations in random networks. J. Non-Cryst. Solids 1983, 57, 355–370.

28. Heussinger, C.; Frey, E. Floppy modes and nonaffine deformations in random fiber networks.

Phys. Rev. Lett. 2006, 97, 105501.

29. Wyart, M.; Liang, H.; Kabla, A.; Mahadevan, L. Elasticity of floppy and stiff random networks.

Phys. Rev. Lett. 2008, 101, 215501.

30. Sharma, A.; Licup, A.J.; Jansen, K.A.; Rens, R.; Sheinman, M.; Koenderink, G.H.; MacKintosh, F.C.

Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 2016, 12, 584–587.

31. Huisman, E.M.; Storm, C.; Barkema, G.T. Frequency-dependent stiffening of semiflexible networks:

A dynamical nonaffine to affine transition. Phys. Rev. E 2010, 82, 061902.

32. Kang, H.; Wen, Q.; Janmey, P.A.; Tang, J.X.; Conti, E.; MacKintosh, F.C. Nonlinear elasticity of stiff filament

networks: Strain stiffening, negative normal stress, and filament alignment in fibrin gels. J. Phys. Chem. B

2009, 113, 3799–3805.

33. Vader, D.; Kabla, A.; Weitz, D.; Mahadevan, L. Strain-induced aalignment in collagen gels. PLoS ONE 2009,

4, 1–12.

34. Harasim, M.; Wunderlich, B.; Peleg, O.; Kröger, M.; Bausch, A.R. Direct observation of the dynamics of

semiflexible polymers in shear Flow. Phys. Rev. Lett. 2013, 110, 108302.

35. Huber, B.; Harasim, M.; Wunderlich, B.; Kröger, M.; Bausch, A.R. Microscopic origin of the non-newtonian

viscosity of Semiflexible polymer solutions in the semidilute regime. ACS Macro Lett. 2014, 3, 136–140.

36. Sussman, D.M.; Schweizer, K.S. Microscopic theory of topologically entangled fluids of rigid macromolecules.

Phys. Rev. E 2011, 83, 061501.

37. Lang, P.S.; Obermayer, B.; Frey, E. Dynamics of a semiflexible polymer or polymer ring in shear flow.

Phys. Rev. E 2014, 89, 022606.

38. Feng, J.; Levine, H.; Mao, X.; Sander, L.M. Alignment and nonlinear elasticity in biopolymer gels. Phys. Rev. E

2015, 91, 042710.

39. Foucard, L.C.; Price, J.K.; Klug, W.S.; Levine, A.J. Cooperative buckling and the nonlinear mechanics of

nematic semiflexible networks. Nonlinearity 2015, 28, R89.

40. Alvarado, J.; Mulder, B.M.; Koenderink, G.H. Alignment of nematic and bundled semiflexible polymers in

cell-sized confinement. Soft Matter 2014, 10, 2354–2364.

41. Münster, S.; Jawerth, L.M.; Leslie, B.A.; Weitz, J.I.; Fabry, B.; Weitz, D.A. Strain history dependence of the

nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. USA 2013, 110, 12197–12202.



Polymers 2016, 8, 353 20 of 20

42. Morse, D.C. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and

stress tensor. Macromolecules 1998, 31, 7030–7043.

43. Morse, D.C. Tube diameter in tightly entangled solutions of semiflexible polymers. Phys. Rev. E 2001,

63, 031502.

44. Glaser, J.; Kroy, K. Tube-width fluctuations of entangled stiff polymers. Phys. Rev. E 2011, 84, 051801.

45. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51,

627–659.

46. Sussman, D.; Schweizer, K. Microscopic theory of the tube confinement potential for liquids of topologically

entangled rigid macromolecules. Phys. Rev. Lett. 2011, 107, 1–4.

47. Szamel, G. Reptation as a dynamic mean-field theory: Study of a simple model of rodlike polymers.

Phys. Rev. Lett. 1993, 70, 3744–3747.

48. Glaser, J.; Chakraborty, D.; Kroy, K.; Lauter, I.; Degawa, M.; Kirchgeßner, N.; Hoffmann, B.; Merkel, R.;

Giesen, M. Tube width fluctuations in F-Actin solutions. Phys. Rev. Lett. 2010, 105, 037801.

49. Odijk, T. The statistics and dynamics of confined or entangled stiff polymers. Macromolecules 1983, 16,

1340–1344.

50. Schöbl, S.; Sturm, S.; Janke, W.; Kroy, K. Persistence-length renormalization of polymers in a crowded

environment of hard disks. Phys. Rev. Lett. 2014, 113, 238302.

51. Ramanathan, S. Study of Dynamics and Viscoelasticity in Entangled Solutions of Semiflexible Polymers by

Brownian Dynamics Simulations. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2006.

52. Ramanathan, S.; Morse, D.C. Simulations of dynamics and viscoelasticity in highly entangled solutions of

semiflexible rods. Phys. Rev. E 2007, 76, 010501.

53. Ramanathan, S.; Morse, D.C. Brownian dynamics algorithm for entangled wormlike threads. J. Chem. Phys.

2007, 126, 094906.

54. Romanowska, M.; Hinsch, H.; Kirchgeßner, N.; Giesen, M.; Degawa, M.; Hoffmann, B.; Frey, E.; Merkel, R.

Direct observation of the tube model in F-actin solutions: Tube dimensions and curvatures. Europhys. Lett.

2009, 86, 26003.

55. Doi, M.; Kuzuu, N.Y. Nonlinear elasticity of rodlike macromolecules in condensed state. J. Polym. Sci. B

Polym. Phys. 1980, 18, 409–419.

56. Larson, R.; Desai, P.S. Modeling the rheology of polymer melts and solutions. Annu. Rev. Fluid Mech. 2015,

47, 47–65.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


