000819723 001__ 819723
000819723 005__ 20241127124646.0
000819723 0247_ $$2doi$$a10.1016/j.jpowsour.2016.10.082
000819723 0247_ $$2ISSN$$a0378-7753
000819723 0247_ $$2ISSN$$a1873-2755
000819723 0247_ $$2WOS$$aWOS:000389159000013
000819723 037__ $$aFZJ-2016-05324
000819723 082__ $$a620
000819723 1001_ $$0P:(DE-HGF)0$$aDolanc, Gregor$$b0$$eCorresponding author
000819723 245__ $$aControl of an afterburner in a diesel fuel cell power unit under variable load
000819723 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000819723 3367_ $$2DRIVER$$aarticle
000819723 3367_ $$2DataCite$$aOutput Types/Journal article
000819723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484120091_30592
000819723 3367_ $$2BibTeX$$aARTICLE
000819723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819723 3367_ $$00$$2EndNote$$aJournal Article
000819723 520__ $$aIn this paper, the control system for a catalytic afterburner in a diesel fuel cell auxiliary power unit is presented. The catalytic afterburner is used to burn the non-utilised hydrogen and other possible combustible components of the fuel cell anode off-gas. To increase the energy efficiency of the auxiliary power unit, the thermal energy released in the catalytic afterburner is utilised to generate the steam for the fuel processor. For optimal operation of the power unit in all modes of operation including load change, stable steam generation is required and overall energy balance must be kept within design range. To achieve this, the reaction temperature of the catalytic afterburner must be stable in all modes of operation. Therefore, we propose the afterburner temperature control based on mass and thermal balances. Finally, we demonstrate the control system using the existing prototype of the diesel fuel cell auxiliary power unit.
000819723 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000819723 588__ $$aDataset connected to CrossRef
000819723 7001_ $$0P:(DE-HGF)0$$aPregelj, Bostjan$$b1
000819723 7001_ $$0P:(DE-HGF)0$$aPetrovic, Janko$$b2
000819723 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b3
000819723 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2016.10.082$$gVol. 338, p. 117 - 128$$p117 - 128$$tJournal of power sources$$v338$$x0378-7753$$y2017
000819723 8564_ $$uhttps://juser.fz-juelich.de/record/819723/files/1-s2.0-S0378775316314823-main.pdf$$yRestricted
000819723 8564_ $$uhttps://juser.fz-juelich.de/record/819723/files/1-s2.0-S0378775316314823-main.gif?subformat=icon$$xicon$$yRestricted
000819723 8564_ $$uhttps://juser.fz-juelich.de/record/819723/files/1-s2.0-S0378775316314823-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000819723 8564_ $$uhttps://juser.fz-juelich.de/record/819723/files/1-s2.0-S0378775316314823-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000819723 8564_ $$uhttps://juser.fz-juelich.de/record/819723/files/1-s2.0-S0378775316314823-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000819723 8564_ $$uhttps://juser.fz-juelich.de/record/819723/files/1-s2.0-S0378775316314823-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000819723 909CO $$ooai:juser.fz-juelich.de:819723$$pVDB
000819723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b3$$kFZJ
000819723 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000819723 9141_ $$y2017
000819723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000819723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819723 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819723 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000819723 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000819723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819723 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819723 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819723 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000819723 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000819723 920__ $$lyes
000819723 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000819723 980__ $$ajournal
000819723 980__ $$aVDB
000819723 980__ $$aI:(DE-Juel1)IEK-3-20101013
000819723 980__ $$aUNRESTRICTED
000819723 981__ $$aI:(DE-Juel1)ICE-2-20101013