000819784 001__ 819784 000819784 005__ 20240712112955.0 000819784 0247_ $$2Handle$$a2128/12895 000819784 037__ $$aFZJ-2016-05380 000819784 041__ $$aEnglish 000819784 1001_ $$0P:(DE-HGF)0$$aXie, Qingguang$$b0 000819784 1112_ $$aMicroswimmers – From Single Particle Motion to Collective Behaviour$$cBonn$$d2016-10-04 - 2016-10-07$$wGermany 000819784 245__ $$aComputer simulations of magnetocapillary swimmers 000819784 260__ $$c2016 000819784 3367_ $$033$$2EndNote$$aConference Paper 000819784 3367_ $$2BibTeX$$aINPROCEEDINGS 000819784 3367_ $$2DRIVER$$aconferenceObject 000819784 3367_ $$2ORCID$$aCONFERENCE_POSTER 000819784 3367_ $$2DataCite$$aOutput Types/Conference Poster 000819784 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1573826063_22181$$xAfter Call 000819784 520__ $$aSelf-assembled magnetocapillary microswimmers were experimentally demonstrated recently. Here, we study the motion of a magnetocapillary swimmer by means of a hybrid lattice Boltzmann and discrete element method. Three magnetic particles are placed at a fluid-fluid interface. The particles deform the interface due to their weights, leading thus to a capillary attraction force. At the same time, the particles experience a repulsive magnetic dipole-dipole force along with an upwards applied static magnetic field. Through the competing of attractive capillary and repulsive magnetic forces, a stable assembly of the three magnetic particles is achieved. By applying an oscillating horizontal magnetic field, the triplet demonstrates a directed motion. We numerically investigate the effect of frequency and direction of the magnetic field on the motion of the swimmer and analyze the results theoretically. In addition, we demonstrate a possible application of magnetocapillary swimmers for cargo transportation. 000819784 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x0 000819784 7001_ $$0P:(DE-Juel1)169463$$aSukhov, Alexander$$b1$$eCorresponding author 000819784 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b2 000819784 8564_ $$uhttps://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.pdf$$yOpenAccess 000819784 8564_ $$uhttps://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.gif?subformat=icon$$xicon$$yOpenAccess 000819784 8564_ $$uhttps://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000819784 8564_ $$uhttps://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000819784 8564_ $$uhttps://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000819784 909CO $$ooai:juser.fz-juelich.de:819784$$pdriver$$pVDB$$popen_access$$popenaire 000819784 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a TU Eindhoven, The Netherlands$$b0 000819784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b1$$kFZJ 000819784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b2$$kFZJ 000819784 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x0 000819784 9141_ $$y2016 000819784 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000819784 920__ $$lyes 000819784 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0 000819784 9801_ $$aFullTexts 000819784 980__ $$aposter 000819784 980__ $$aVDB 000819784 980__ $$aI:(DE-Juel1)IEK-11-20140314 000819784 980__ $$aUNRESTRICTED 000819784 981__ $$aI:(DE-Juel1)IET-2-20140314