001     819784
005     20240712112955.0
024 7 _ |a 2128/12895
|2 Handle
037 _ _ |a FZJ-2016-05380
041 _ _ |a English
100 1 _ |a Xie, Qingguang
|0 P:(DE-HGF)0
|b 0
111 2 _ |a Microswimmers – From Single Particle Motion to Collective Behaviour
|c Bonn
|d 2016-10-04 - 2016-10-07
|w Germany
245 _ _ |a Computer simulations of magnetocapillary swimmers
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1573826063_22181
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Self-assembled magnetocapillary microswimmers were experimentally demonstrated recently. Here, we study the motion of a magnetocapillary swimmer by means of a hybrid lattice Boltzmann and discrete element method. Three magnetic particles are placed at a fluid-fluid interface. The particles deform the interface due to their weights, leading thus to a capillary attraction force. At the same time, the particles experience a repulsive magnetic dipole-dipole force along with an upwards applied static magnetic field. Through the competing of attractive capillary and repulsive magnetic forces, a stable assembly of the three magnetic particles is achieved. By applying an oscillating horizontal magnetic field, the triplet demonstrates a directed motion. We numerically investigate the effect of frequency and direction of the magnetic field on the motion of the swimmer and analyze the results theoretically. In addition, we demonstrate a possible application of magnetocapillary swimmers for cargo transportation.
536 _ _ |a 89574 - Theory, modelling and simulation (POF2-89574)
|0 G:(DE-HGF)POF2-89574
|c POF2-89574
|f POF II T
|x 0
700 1 _ |a Sukhov, Alexander
|0 P:(DE-Juel1)169463
|b 1
|e Corresponding author
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 2
856 4 _ |u https://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819784/files/Poster_microswimmers_A_Sukhov_2016.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:819784
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a TU Eindhoven, The Netherlands
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169463
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89574
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21