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|. Introduction l1l. Numerical results

Self-assembled magnetocapillary microswimmers were o Frequency dependence of the average speed of swimmers
experimentally demonstrated recently [1]. When three magnetic = 3.0x10° ———————————— ¢

particles are placed at a fluid-fluid interface, the particles deform the
interface due to their weights, leading to capillary attraction. If a
static magnetic field is applied perpendicularly to the interface, the
particles experience a repulsive magnetic dipole-dipole interaction.
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Through the competition of attractive capillary and repulsive shows a resonant & ‘

magnetic forces, a stable assembly of the three magnetic particles hehavior for freque -2 1.0x105 ® :

is achieved. By applying an additional oscillating magnetic field, the s o (0 1/ 9= g

particle assembly demonstrates a directed motion. Here, we SHCIEs TIOSE 1o 1y ®50x10° '
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numerically study the effect of frequency and direction of the Z N ....0.90101‘.0..01 . @ ®

magnetic field on the motion of the swimmer and demonstrate the
possibility to utilize the swimmer for transporting cargo particles.

Frequency [1/At]
o Influence of the direction of the oscillating magnetic field

Z | | Z | | Z

. . initial final @ initial final @ initial | final I.
Il. Methods and simulation setup . #1 #2
. o e J4100 R o 5 100 [ e o .
3 ; 3 | |
. . . . . > ; P \ ; b o
For the simulation of flu |_ds we apply a hybrid lattice Boltzmann I I S Il 10 ®2 | I o o2 @
method (LBM) [2]. Multiple components are calculated locally 1 ° ®
according to the approach of Shan and Chen. Magnetic particles ; . . XO.‘” * | o . .
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are discretized on the lattice and coupled to both fluid species by ° >0 10 ° >0 100 0 50 100
means of a modified bounce-back boundary condition [3, 4]. — :
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