000819802 001__ 819802
000819802 005__ 20210129224354.0
000819802 0247_ $$2doi$$a10.1016/j.tet.2016.08.022
000819802 0247_ $$2ISSN$$a0040-4020
000819802 0247_ $$2ISSN$$a1464-5416
000819802 0247_ $$2WOS$$aWOS:000384776300007
000819802 037__ $$aFZJ-2016-05397
000819802 041__ $$aEnglish
000819802 082__ $$a540
000819802 1001_ $$0P:(DE-HGF)0$$aAkone, Sergi Herve$$b0
000819802 245__ $$aInducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification
000819802 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000819802 3367_ $$2DRIVER$$aarticle
000819802 3367_ $$2DataCite$$aOutput Types/Journal article
000819802 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1476769428_28932
000819802 3367_ $$2BibTeX$$aARTICLE
000819802 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819802 3367_ $$00$$2EndNote$$aJournal Article
000819802 520__ $$aCo-culturing the fungal endophyte Chaetomium sp. with the bacterium Bacillus subtilis on solid rice medium resulted in an up to 8.3-fold increase in the accumulation of constitutively present metabolites that included a 1:1 mixture of 3- and 4-hydroxybenzoic acid methyl esters (1 and 2, respectively), and the polyketides acremonisol A (3), SB236050 (4), and SB238569 (5). In addition, seven compounds including isosulochrin (6), protocatechuic acid methyl ester (7), as well as five new natural products (8e12) were detected in the co-cultures, but not in axenic fungal cultures. Treatment of Chaetomium sp. with the epigenetic modifier suberoylanilide hydroxamic acid or 5-azacytidine resulted in an enhanced accumulation of 6, which was likewise detected during co-culture. Compound 5 showed strong cytotoxicity against the mouse lymphoma L5178Y cell line with an IC50 value of 1 mM, as well as weak antibacterial activity against B. subtilis with an MIC value of 53 mM.
000819802 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000819802 588__ $$aDataset connected to CrossRef
000819802 7001_ $$0P:(DE-HGF)0$$aMándi, Attila$$b1
000819802 7001_ $$0P:(DE-HGF)0$$aKurtán, Tibor$$b2
000819802 7001_ $$0P:(DE-Juel1)132001$$aHartmann, Rudolf$$b3$$ufzj
000819802 7001_ $$0P:(DE-HGF)0$$aLin, Wenhan$$b4
000819802 7001_ $$0P:(DE-HGF)0$$aDaletos, Georgios$$b5
000819802 7001_ $$0P:(DE-HGF)0$$aProksch, Peter$$b6$$eCorresponding author
000819802 773__ $$0PERI:(DE-600)2007072-X$$a10.1016/j.tet.2016.08.022$$gVol. 72, no. 41, p. 6340 - 6347$$n41$$p6340 - 6347$$tTetrahedron$$v72$$x0040-4020$$y2016
000819802 8564_ $$uhttps://juser.fz-juelich.de/record/819802/files/Inducing%20secondary%20metabolite%20production%20by%20the%20endophytic%20fungus%20Chaetomium%20sp%20through%20fungal%E2%80%93bacterial%20co-culture%20and%20epigenetic%20modification_2016.pdf$$yRestricted
000819802 8564_ $$uhttps://juser.fz-juelich.de/record/819802/files/Inducing%20secondary%20metabolite%20production%20by%20the%20endophytic%20fungus%20Chaetomium%20sp%20through%20fungal%E2%80%93bacterial%20co-culture%20and%20epigenetic%20modification_2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000819802 909CO $$ooai:juser.fz-juelich.de:819802$$pVDB
000819802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132001$$aForschungszentrum Jülich$$b3$$kFZJ
000819802 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000819802 9141_ $$y2016
000819802 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819802 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000819802 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000819802 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000819802 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTETRAHEDRON : 2015
000819802 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819802 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819802 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819802 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000819802 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000819802 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819802 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819802 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819802 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819802 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000819802 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819802 920__ $$lyes
000819802 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000819802 980__ $$ajournal
000819802 980__ $$aVDB
000819802 980__ $$aUNRESTRICTED
000819802 980__ $$aI:(DE-Juel1)ICS-6-20110106
000819802 981__ $$aI:(DE-Juel1)IBI-7-20200312