000819805 001__ 819805
000819805 005__ 20210129224354.0
000819805 0247_ $$2doi$$a10.18632/oncotarget.12337
000819805 0247_ $$2Handle$$a2128/12542
000819805 0247_ $$2WOS$$aWOS:000387452100075
000819805 037__ $$aFZJ-2016-05400
000819805 041__ $$aEnglish
000819805 082__ $$a610
000819805 1001_ $$0P:(DE-HGF)0$$aKoch, Katharina$$b0
000819805 245__ $$aReciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells
000819805 260__ $$a[S.l.]$$bImpact Journals LLC$$c2016
000819805 3367_ $$2DRIVER$$aarticle
000819805 3367_ $$2DataCite$$aOutput Types/Journal article
000819805 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484569682_30753
000819805 3367_ $$2BibTeX$$aARTICLE
000819805 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819805 3367_ $$00$$2EndNote$$aJournal Article
000819805 520__ $$aGlioblastoma (GBM) is the most malignant brain tumor with very limited therapeutic options. Standard multimodal treatments, including surgical resection and combined radio-chemotherapy do not target the most aggressive subtype of glioma cells, brain tumor stem cells (BTSCs). BTSCs are thought to be responsible for tumor initiation, progression, and relapse. Furthermore, they have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT) thereby inducing tumor dissemination and chemo resistance. Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) on GBM cell cultures we provide evidence that the expression of well-known EMT activators of the ZEB, TWIST and SNAI families and EMT target genes N-cadherin and VIMENTIN is associated with aberrant choline metabolism. The cholinic phenotype is characterized by high intracellular levels of phosphocholine and total choline derivatives and was associated with malignancy in various cancers. Both genetic and pharmacological inhibition of the cardinal choline metabolism regulator choline kinase alpha (CHKα) significantly reduces the cell viability, invasiveness, clonogenicity, and expression of EMT associated genes in GBM cells. Moreover, in some cell lines synergetic cytotoxic effects were observed when combining the standard of care chemotherapeutic temozolomide with the CHKα inhibitor V-11-0711. Taken together, specific inhibition of the enzymatic activity of CHKα is a powerful strategy to suppress EMT which opens the possibility to target chemo-resistant BTSCs through impairing their mesenchymal transdifferentiation. Moreover, the newly identified EMT-oncometabolic network may be helpful to monitor the invasive properties of glioblastomas and the success of anti-EMT therapy.
000819805 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000819805 588__ $$aDataset connected to CrossRef
000819805 7001_ $$0P:(DE-Juel1)132001$$aHartmann, Rudolf$$b1$$ufzj
000819805 7001_ $$0P:(DE-HGF)0$$aSchröter, Friederike$$b2
000819805 7001_ $$0P:(DE-HGF)0$$aKora Suwala, Abigail$$b3
000819805 7001_ $$0P:(DE-HGF)0$$aMaciaczyk, Donata$$b4
000819805 7001_ $$0P:(DE-HGF)0$$aCaroline Krüger, Andrea$$b5
000819805 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b6$$ufzj
000819805 7001_ $$0P:(DE-HGF)0$$aDietrich Kahlert, Ulf$$b7
000819805 7001_ $$0P:(DE-HGF)0$$aMaciaczyk, Jaroslaw$$b8$$eCorresponding author
000819805 770__ $$zOnline ISSN: 1949-2553
000819805 773__ $$0PERI:(DE-600)2560162-3$$a10.18632/oncotarget.12337$$n45$$p73414-73431$$tOncoTarget$$v7$$x1949-2553$$y2016
000819805 8564_ $$uhttps://juser.fz-juelich.de/record/819805/files/Reciprocal%20regulation%20of%20the%20cholinic%20phenotype%20and%20epithelial-mesenchymal%20transition%20in%20glioblastoma%20cells_2016.pdf$$yOpenAccess
000819805 8564_ $$uhttps://juser.fz-juelich.de/record/819805/files/Reciprocal%20regulation%20of%20the%20cholinic%20phenotype%20and%20epithelial-mesenchymal%20transition%20in%20glioblastoma%20cells_2016.gif?subformat=icon$$xicon$$yOpenAccess
000819805 8564_ $$uhttps://juser.fz-juelich.de/record/819805/files/Reciprocal%20regulation%20of%20the%20cholinic%20phenotype%20and%20epithelial-mesenchymal%20transition%20in%20glioblastoma%20cells_2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819805 8564_ $$uhttps://juser.fz-juelich.de/record/819805/files/Reciprocal%20regulation%20of%20the%20cholinic%20phenotype%20and%20epithelial-mesenchymal%20transition%20in%20glioblastoma%20cells_2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819805 8564_ $$uhttps://juser.fz-juelich.de/record/819805/files/Reciprocal%20regulation%20of%20the%20cholinic%20phenotype%20and%20epithelial-mesenchymal%20transition%20in%20glioblastoma%20cells_2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819805 8564_ $$uhttps://juser.fz-juelich.de/record/819805/files/Reciprocal%20regulation%20of%20the%20cholinic%20phenotype%20and%20epithelial-mesenchymal%20transition%20in%20glioblastoma%20cells_2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819805 909CO $$ooai:juser.fz-juelich.de:819805$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000819805 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132001$$aForschungszentrum Jülich$$b1$$kFZJ
000819805 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b6$$kFZJ
000819805 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000819805 9141_ $$y2016
000819805 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000819805 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819805 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819805 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bONCOTARGET : 2015
000819805 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819805 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819805 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819805 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bONCOTARGET : 2015
000819805 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819805 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819805 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819805 920__ $$lyes
000819805 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000819805 9801_ $$aFullTexts
000819805 980__ $$ajournal
000819805 980__ $$aVDB
000819805 980__ $$aI:(DE-Juel1)ICS-6-20110106
000819805 980__ $$aUNRESTRICTED
000819805 981__ $$aI:(DE-Juel1)IBI-7-20200312