000819825 001__ 819825
000819825 005__ 20220930130108.0
000819825 0247_ $$2doi$$a10.1038/srep32104
000819825 0247_ $$2Handle$$a2128/12533
000819825 0247_ $$2WOS$$aWOS:000382366300001
000819825 0247_ $$2altmetric$$aaltmetric:11002485
000819825 0247_ $$2pmid$$apmid:27580964
000819825 037__ $$aFZJ-2016-05412
000819825 041__ $$aEnglish
000819825 082__ $$a000
000819825 1001_ $$0P:(DE-Juel1)156207$$aKrämer, Christina$$b0$$ufzj
000819825 245__ $$aTime-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion
000819825 260__ $$aLondon$$bNature Publishing Group$$c2016
000819825 3367_ $$2DRIVER$$aarticle
000819825 3367_ $$2DataCite$$aOutput Types/Journal article
000819825 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480685431_22142
000819825 3367_ $$2BibTeX$$aARTICLE
000819825 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819825 3367_ $$00$$2EndNote$$aJournal Article
000819825 520__ $$aConventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
000819825 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000819825 588__ $$aDataset connected to CrossRef
000819825 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b1
000819825 7001_ $$0P:(DE-Juel1)140195$$aKohlheyer, Dietrich$$b2$$eCorresponding author
000819825 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep32104$$gVol. 6, p. 32104 -$$p32104$$tScientific reports$$v6$$x2045-2322$$y2016
000819825 8564_ $$uhttps://juser.fz-juelich.de/record/819825/files/srep32104.pdf$$yOpenAccess
000819825 8564_ $$uhttps://juser.fz-juelich.de/record/819825/files/srep32104.gif?subformat=icon$$xicon$$yOpenAccess
000819825 8564_ $$uhttps://juser.fz-juelich.de/record/819825/files/srep32104.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819825 8564_ $$uhttps://juser.fz-juelich.de/record/819825/files/srep32104.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819825 8564_ $$uhttps://juser.fz-juelich.de/record/819825/files/srep32104.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819825 8564_ $$uhttps://juser.fz-juelich.de/record/819825/files/srep32104.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819825 8767_ $$92016-08-05$$d2016-08-09$$eAPC$$jZahlung erfolgt
000819825 909CO $$ooai:juser.fz-juelich.de:819825$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000819825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156207$$aForschungszentrum Jülich$$b0$$kFZJ
000819825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b1$$kFZJ
000819825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140195$$aForschungszentrum Jülich$$b2$$kFZJ
000819825 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000819825 9141_ $$y2016
000819825 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819825 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819825 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000819825 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000819825 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000819825 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000819825 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000819825 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000819825 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819825 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819825 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819825 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819825 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819825 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819825 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819825 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000819825 9801_ $$aFullTexts
000819825 980__ $$ajournal
000819825 980__ $$aVDB
000819825 980__ $$aI:(DE-Juel1)IBG-1-20101118
000819825 980__ $$aUNRESTRICTED
000819825 980__ $$aAPC