001     819825
005     20220930130108.0
024 7 _ |a 10.1038/srep32104
|2 doi
024 7 _ |a 2128/12533
|2 Handle
024 7 _ |a WOS:000382366300001
|2 WOS
024 7 _ |a altmetric:11002485
|2 altmetric
024 7 _ |a pmid:27580964
|2 pmid
037 _ _ |a FZJ-2016-05412
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Krämer, Christina
|0 P:(DE-Juel1)156207
|b 0
|u fzj
245 _ _ |a Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion
260 _ _ |a London
|c 2016
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480685431_22142
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 1
700 1 _ |a Kohlheyer, Dietrich
|0 P:(DE-Juel1)140195
|b 2
|e Corresponding author
773 _ _ |a 10.1038/srep32104
|g Vol. 6, p. 32104 -
|0 PERI:(DE-600)2615211-3
|p 32104
|t Scientific reports
|v 6
|y 2016
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/819825/files/srep32104.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819825/files/srep32104.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819825/files/srep32104.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819825/files/srep32104.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819825/files/srep32104.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/819825/files/srep32104.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:819825
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140195
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21