000819845 001__ 819845
000819845 005__ 20210129224400.0
000819845 0247_ $$2doi$$a10.1016/j.cpc.2016.03.008
000819845 0247_ $$2ISSN$$a0010-4655
000819845 0247_ $$2ISSN$$a1386-9485
000819845 0247_ $$2ISSN$$a1879-2944
000819845 0247_ $$2WOS$$aWOS:000377231300008
000819845 037__ $$aFZJ-2016-05429
000819845 082__ $$a004
000819845 1001_ $$0P:(DE-HGF)0$$aTeijeiro, C.$$b0$$eCorresponding author
000819845 245__ $$aEfficient parallelization of analytic bond-order potentials for large-scale atomistic simulations
000819845 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2016
000819845 3367_ $$2DRIVER$$aarticle
000819845 3367_ $$2DataCite$$aOutput Types/Journal article
000819845 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1476881578_7921
000819845 3367_ $$2BibTeX$$aARTICLE
000819845 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819845 3367_ $$00$$2EndNote$$aJournal Article
000819845 520__ $$aAnalytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.
000819845 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000819845 588__ $$aDataset connected to CrossRef
000819845 7001_ $$0P:(DE-HGF)0$$aHammerschmidt, T.$$b1$$eCorresponding author
000819845 7001_ $$0P:(DE-HGF)0$$aDrautz, R.$$b2$$eCorresponding author
000819845 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b3$$eCorresponding author$$ufzj
000819845 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2016.03.008$$gVol. 204, p. 64 - 73$$p64 - 73$$tComputer physics communications$$v204$$x0010-4655$$y2016
000819845 8564_ $$uhttps://juser.fz-juelich.de/record/819845/files/1-s2.0-S0010465516300662-main.pdf$$yRestricted
000819845 8564_ $$uhttps://juser.fz-juelich.de/record/819845/files/1-s2.0-S0010465516300662-main.gif?subformat=icon$$xicon$$yRestricted
000819845 8564_ $$uhttps://juser.fz-juelich.de/record/819845/files/1-s2.0-S0010465516300662-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000819845 8564_ $$uhttps://juser.fz-juelich.de/record/819845/files/1-s2.0-S0010465516300662-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000819845 8564_ $$uhttps://juser.fz-juelich.de/record/819845/files/1-s2.0-S0010465516300662-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000819845 8564_ $$uhttps://juser.fz-juelich.de/record/819845/files/1-s2.0-S0010465516300662-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000819845 909CO $$ooai:juser.fz-juelich.de:819845$$pVDB
000819845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich$$b3$$kFZJ
000819845 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000819845 9141_ $$y2016
000819845 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819845 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000819845 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000819845 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2015
000819845 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819845 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819845 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819845 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000819845 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000819845 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819845 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819845 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819845 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000819845 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819845 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000819845 980__ $$ajournal
000819845 980__ $$aVDB
000819845 980__ $$aUNRESTRICTED
000819845 980__ $$aI:(DE-Juel1)JSC-20090406