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Abstract

Stabilizing the magnetic signal of single adatoms is a crucial step towards their suc-

cessful usage in widespread technological applications such as high-density magnetic

data storage devices. The quantum mechanical nature of these tiny objects, however,

introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local mag-

netic moment of interest by dwindling the magnetic anisotropy potential barrier even

at absolute zero temperature. Here, we elucidate the origins and quantify the effect

of the fundamental ingredients determining the magnitude of the fluctuations, namely

the (i) local magnetic moment, (ii) spin-orbit coupling and (iii) electron-hole Stoner

excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we

demonstrate that the transverse contribution of the fluctuations is comparable in size

to the magnetic moment itself, leading to a remarkable &50% reduction of the mag-

netic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating

the fluctuation magnitude to characteristic features of adatoms, providing practical

guidelines for designing magnetically stable nanomagnets with minimal quantum fluc-

tuations.
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Understanding electron spin dynamics and spin relaxation phenomena of nanomagnets

is of capital importance due to both, fundamental motivations and potential technological

applications, for instance, in the context of magnetic data storage in the atomic limit. If the

hitherto ever-growing trend of magnetic storage density is to be mantained in the future, the

magnetic building blocks need to be shrinked to the size of just a handful of atoms. At this

scale, however, quantum mechanics pose a serious threat to the stability of the local magnetic

moment associated to the nanomagnets, which can be easily perturbed by interactions with

their environment.1–3 In this regard, the stability of the magnetic signal depends crucially

on the so-called magnetic anisotropy energy (MAE), an energy barrier generated by the

spin-orbit coupling (SOC) that protects and stabilizes the direction of the local magnetic

moment against possible fluctuations of the spin, e.g. of thermal origin.

Among nanomagnets, single magnetic adatoms represent the smallest possible magnetic

unit, thus motivating an intense search for elements that exhibit large and stable magnetic

moments when deposited on a substrate. Early theoretical simulations based on density

functional theory (DFT)4–6 boosted this search and created a huge enthusiasm in the field

by predicting gigantic local magnetic moments of diverse transition-metal (TM) adatoms,

including 4d and 5d elements that are nominally nonmagnetic in bulk. The corresponding

experimental scenario, in turn, is notably rich, complex and challenging. On one hand, X-ray

magnetic circular dichroism (XMCD) and inelastic scanning tunneling spectroscopy (ISTS)

assert that several 3d TM adatoms can possess a substantial MAE of few meV (see e.g.

refs7–14). On the other hand, and in remarkable contrast, the very same adatoms behave

as paramagnetic entities when measured by means of spin-polarized scanning tunneling mi-

croscopy (SP-STM) (see e.g. refs15–17), implying the existence of a mechanism that destroys

the magnetic stability locally. Going one step further, the case of 4d and 5d adatoms is

even more striking, given that they have so far exhibited no clear magnetic signal even when

subjected to the static magnetic field of an XMCD experiment, in notorious disagreement

with theoretical predictions.18
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In view of this scenario, a central question arises: what is the mechanism leading to the

apparent instability of the magnetic moment of an adatom? In order to address this issue,

here we investigate a key dynamical aspect of single adatoms that has not been hithertho

considered, namely the contribution of zero-point spin-fluctuations (ZPSF) (see Fig. 1 for a

schematic illustration). These are quantum fluctuations present even at absolute zero tem-

perature that can crucially affect the magnetic properties of itinerant electron magnets.19,20

Here, we elucidate their origin and quantify their impact on the magnetic stability of the

series of 3d and 4d TM adatoms deposited on metallic substrates. Remarkably, our first

principles investigation reveals that the transverse contribution to the ZPSF is of the order

of the local magnetic moment itself, an astonishingly large value that has profound effects

on the MAE, which can be reduced by more than 50% with respect to the static value cal-

culated by standard DFT. In order to minimize their destabilizing effect, we pinpoint the

three fundamental ingredients that determine the magnitude of the ZPSF, namely the (i)

local magnetic moment, (ii) SOC and (iii) electron-hole Stoner excitations. Based on our

findings, we develop a simple diagram where the ZPSF of an arbitrary adatom are classified

according to the aforementioned factors, offering practical guidelines for stabilizing robust

magnetic properties against fluctuations.

The ZPSF are formally given by the fluctuation-dissipation theorem,21 which relates the

variance of the spin-fluctuations, ξ2, to the imaginary part of the enhanced spin-susceptibility,

Figure 1: Schematic illustration of the spin-fluctuations (blue arrows) of an adatom (red
ball) supported on a surface (grey balls).
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Imχ(ω). As it turns out, the ZPSF are predominantly determined by the transverse contri-

bution (see Supporting Information), which is given by21,22

ξ2
⊥ = − 1

π

∫ ∞
0

dω Imχ⊥(ω). (1)

Interestingly, Eq. 1 establishes a deep and insightful connection between the internal fluctu-

ations and the response properties of the system, but its calculation is hard in practice, and

no systematic first-principles study of the above quantity has been performed so far.

Let us begin our analysis by discussing Fig. 2, where the calculated spin-excitation and

spin-fluctuation spectra associated to TM adatoms deposited on Ag(100) are displayed (see

Supporting Information regarding technical details on the formalism and calculations). First,

we focus on Figs. 2(a,c), which illustrate the calculated Imχ⊥(ω) for 3d and 4d adatoms,

respectively. These figures reveal the existence of a large peak in the meV range for all

adatoms, corresponding to a spin-excitation. Noteworthy, the location of the resonance

frequency is proportional to the MAE, which in turn is determined by the SOC.23 Fe shows

the largest resonance frequency with ω0 ∼ 6 meV, while for the rest of adatoms we find

ω0 . 4 meV; in the extreme cases of Ti, V, Mn, Cr and Mo, the spin-excitation is found

at very small frequencies, ω0 . 0.5 meV, impliying that the net effect of SOC is extremely

weak in these adatoms. A further feature revealed by Figs. 2(a,c) is the width of the spin-

excitation peak, which is linked to the amount of electron-hole Stoner excitations near the

Fermi level.24 Our calculations show that Ru and, to some extent also Nb and Tc, possess

large widths as compared to the rest of adatoms, specially those that peak below 1 meV.

Next, we analyze the magnitude of the transverse ZPSF (Eq. 1), as illustrated in Figs.

2(b,d) for 3d and 4d adatoms on Ag(100), respectively; the solid lines depict the evolution of

the mean value,
√
ξ2
⊥, as a function of the upper boundary of the frequency integral, while the

converged value is denoted by the horizontal dashed lines (see Supporting Information). The

most important message of these figures is that
√
ξ2
⊥ is of the order of the Bohr magneton;
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Figure 2: (a) and (c) Density of transverse spin-excitations as given by Imχ⊥(ω) for selected
3d and 4d adatoms on Ag(100), respectively. Insets adress different frequency regions where
various resonance frequencies are located. (b) and (d) Calculated magnitude of the mean
value of transverse ZPSF for the adatoms considered in (a) and (c), respectively. Solid lines
depict the evolution of the value as a function of the upper boundary of the integral of Eq.
1, while the horizontal dashed lines represent the converged value.

the elements with largest values are Cr, Mn, Fe and Tc, which have
√
ξ2
⊥ ∼ 3 µB, while in

the case of Zr and Co this value is drastically reduced by more than 50 %. Our calculations

further demonstrate that the main contribution to the integral of Eq. 1 comes from the

spin-excitation peak in the meV region, which represents between 70 % and ∼100 % of the

total depending on the adatom.

It is instructive to compare the magnitude of the transverse ZPSF with the local magnetic

moments of the adatoms, which we denote as M . This is done in Fig. 3, where it is

demonstrated that
√
ξ2
⊥ (black circles) represents always an appreciable fraction of M (black

squares); we find
√
ξ2
⊥ ∼ M/2 for Mn and Cr, while

√
ξ2
⊥ ∼ M for Ti, Fe, Zr, Nb and Ru,

implying that the latter suffer from very strong deviations of the direction of the local
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Figure 3: Local magnetic moment (solid lines) and mean value of the transverse ZPSF
(dashed lines) for 3d (left pannel) and 4d (right pannel) adatoms. M (

√
ξ2
⊥) is denoted by

black squares (black circles) and red upward triangles (red downward triangles) for adatoms
deposited on Ag(100) and Cu(111), respectively.

magnetic moment. It is also noteworthy that both M and
√
ξ2
⊥ follow the evolution dictated

by Hund’s rules, whereby the adatoms with nearly half-filled d-shells have largest values:

case of Cr and Mn among 3d, and Mo and Tc among 4d. This trend is clearly fulfilled in

the case of the magnetic moment, as reported in previous works,4,5 whereas the evolution

of the fluctuation magnitude presents some exceptions, such as the case of Fe and Tc. A

further feature revealed by Fig. 3 is that the spin-fluctuation-to-magnetization ratio (SFMR)

is overall larger in 4d adatoms than in 3d. As a final remark, we note that Mo has by far

the lowest SFMR among 4d elements: interestingly, it is the only 4d adatom deposited on

Ag(100) that exhibits an experimentally detectable magnetic signal.25

We have extended the above analysis to the same set of adatoms deposited on Cu(111),

which exhibit essentially the same features as on Ag(100) (see red triangles in Fig. 3). The

only mentionable difference is that the SFMR of Cr and Mn is somewhat lower than what

is expected from the trend of Fig. 3; the origin of this feature will be discussed in the next

subsection. Our ab initio investigation has therefore exposed an important general property

of adatoms, namely that the magnitude of their transverse ZPSF is of the order of their local

magnetic moment.

We proceed now to identify the fundamental factors that determine the magnitude of the

transverse ZPSF. For such purpose, we consider the Landau-Lifshitz-Gilbert (LLG) equa-

tion.26 This is widely employed for characterizing the spin-dynamics of macroscopic magnetic
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Figure 4: The background shows a 2D plot of the SFMR as a function of the damping and
the resonance frequency in the LLG model (Eq. 2). Circles (black) and squares (red) denote
various adatoms deposited on Ag(100) and Cu(111), respectively, where the parameters η
and ω0 have been extracted from a fit to the ab initio spin-susceptibility.

systems, and its use has been recently legitimated also for microscopic systems,23,24 as it al-

lows to accurately reproduce the ab initio calculations by extracting the relevant parameters.

In the LLG model, the imaginary part of the transverse spin-susceptibility takes the form of

an skewed Lorentzian, i.e. ImχLLG
± (ω) = C ·ηω/

(
(ω−ω0)2+(ηω0)2

)
, with C = Mγ/2(1+η2).

The parameters entering this model are the Gilbert damping, η, which is proportional to the

width of the spin-excitation peak and is therefore dominated by Stoner excitations, and the

resonance frequency, ωres = ω0

√
1 + η2 = γBeff/

√
1 + η2, where γ is the gyromagnetic ratio

and Beff an effective magnetic field whose magnitude is determined by the strength of SOC;

a detailed discussion can be found in, e.g., Ref.23

Within the LLG model, the integral of Eq. 1 can be calculated analytically, yielding the

following expression for the transverse ZPSF:

ξ2
LLG =

Mγ

π(1 + η2)

(η
2

log
(x2 + η−2 + 1)2 − (2xη−1)2

(η−2 + 1)2
+ ϑ(x, η)

)
. (2)
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Above, ϑ(x, η) = arctan(x− η−1)− arctan(x+ η−1) + 2 arctan η−1 and x = ωc/ηω0, with ωc

a cutoff frequency to be converged (see Supporting Information).

Eq. 2 is very useful as it provides an interpretation for the magnitude of the fluctua-

tions in terms of the physical parameters of the LLG model, which are in turn related to

the electronic structure of the adatoms. As anticipated in the introduction, three major

ingredients come into play: M , ω0 and η. Eq. 2 reveals that
√
ξ2

LLG is directly propor-

tional to
√
M , which, apart from accounting for the rough proportionality displayed by our

calculations (see Fig. 3), it indicates that fluctuations are relatively weaker for adatoms

with large magnetic moments, i.e. the nearly half-filled d-shell elements. Interestingly, the

simple relationship of Eq. 2 allows to analyze the SFMR,
√
ξ2

LLG/γM , as a function of η

and ω0 by setting the standard value for the gyromagnetic ratio γ = 2; the resulting map

is displayed in the background of Fig. 4. This figure evidences that the SFMR is critically

enhanced by the damping, as
√
ξ2

LLG/γM varies by almost 70 % in the range of values con-

sidered for η. This feature comes from the fact that enhanced Stoner excitations give rise

to a large dissipation of energy, implying large fluctuations via the connection established

by the fluctuation-dissipation theorem. It is also noteworthy that when η tends to zero,√
ξ2

LLG/γM = 1 µ
1/2
B , i.e. Eq. 2 reveals an intrinsic contribution to the transverse ZPSF

present even in the limiting case of a spin-excitation with vanishing width. Finally, Fig.

4 demonstrates that the transverse ZPSF are reduced for large resonance frequencies, but,

quite unexpectedly, one finds that the induced variation is much less important than with

the damping.

We are now in position to perform a quantitative analysis of the ab initio transverse

ZPSF in terms of the LLG model. For such purpose, we have systematically extracted the

parameters η and ω0 by fitting ImχLLG
± (ω) to the calculated spin-susceptibility (e.g. Figs.

2(a,c)) for all adatoms. This allows us to locate the position of each adatom on the map

of Fig. 4, as depicted by the circles and squares for the case of the Cu(111) and Ag(100)

substrates, respectively. The resulting distribution makes it clear that the origin of the large
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Figure 5: Schematic illustration of the renormalization of the MAE induced by the transverse
ZPSF. K and K ′ respectively represent the static and renormalized anisotropy constant (see
Eq. 3).

SFMR found in the case of Ti, Co, Ru and Nb on both substrates, as well as Fe and Zr on

Ag(100), is mainly due to the large damping factors of these adatoms, η & 0.5, while this

tendency is only slightly modified by the position of the resonance frequency. On the opposite

side, despite the small resonance frequency of Mn, Cr and Mo adatoms on both substrates,

their extremely small damping, η . 0.05, makes
√
ξ2

LLG/γM approach the intrinsic minimum

value.

We note that the distribution of elements shown in Fig. 4 is a guideline to understand the

behavior of the SFMR in the context of the LLG model, not an exhaustive representation

of the ab initio data summarized in Fig. 3. For this reason, some details, such as the larger

SFMR of Cr and Mn on Cu(111) than on Ag(100) (see Fig. 3) are not accounted for by

the distribution. This particular feature can be attributed to deviations of the gyromagnetic

ratio from the standard value γ = 2, which are larger in the case of Cr and Mn on Cu(111)

than on Ag(100)23 (see Eq. 2).

Having provided an interpretation for the calculated magnitude of the transverse ZPSF

in terms of the underlying physical parameters, we come now to analyze its effects on the

magnetic stability of the adatoms. For such purpose, we estimate how the fluctuations affect

the MAE, as this quantity defines the strength of the magnetic easy axis. We note that

the energy scale of the MAE for adatoms is meV,7,23 which coincides with the energy of

spin-excitations that give rise to the primary contribution to the transverse ZPSF (see Fig.

2).
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Table 1: Calculated anisotropy constants K and K′ for selected 3d and 4d adatoms on
Ag(100) and Cu(111).

Cr Mn Fe Co Nb Mo Tc Ru
On Ag(100)

K (meV) 0.22 −0.02 −3.66 −0.46 1.78 1.55 −1.13 −8.32
K′ (meV) 0.05 −0.01 −0.12 −0.08 0.16 0.35 0.01 −0.99

On Cu(111)
K (meV) 0.21 0.36 −4.73 −3.7 0.55 2.60 3.13 −20.01
K′ (meV) 0.07 0.11 −0.32 1.12 −0.05 0.46 0.44 2.66

Let us consider the expression for the MAE for uniaxial systems, Ea(θ) = K(M ·

êz)
2/M2 = K cos2 θ, where K is the so-called anisotropy constant. Consequently, the energy

barrier between the magnetic moment pointing along the z axis (θ = 0) and a perpendicular

axis (θ = π/2) is simply given by ∆E = Ea(θ = 0) − Ea(θ = π/2) = K, as schematically

illustrated in Fig. 5. In the spirit of the spin-fluctuation theory of Moriya,27 we now let

magentic moment to fluctuate around its equilibrium value, i.e. M2 → (M êz +
∑
⊥ ξ⊥)2.

Introducing this term into the definition of Ea(θ), we obtain a renormalized expression for

the MAE, i.e. Ea(θ, ξ
2
⊥) = K(M2 cos2 θ + ξ2

⊥ sin2 θ)/(M2 + 2ξ2
⊥). Noteworthy, this implies

that the energy barrier gets effectively reduced by the transverse ZPSF,

∆E(ξ2
⊥) = K

(
1− 3ξ2

⊥
M2 + 2ξ2

⊥

)
≡ K′, (3)

which is characterized by a modified anisotropy constant, K′, as schematically illustrated in

Fig. 5.

In Table 1 we have listed the calculated values for both, the anisotropy constant K,

which we have evaluated by band energy differences following the magnetic force theorem,28

and the reduced constant K′, calculated using the values of the magnetic moments and

transverse ZPSF of the adatoms. Our calculations reveal a strong and generalized reduction

of the MAE, which goes much beyond previous estimates that did not take into account

fluctuation effects.23 For the extreme cases where the ZPSF are larger than M (mostly

4d adatoms), the direction of the local magnetic moment gets completely destabilized, as
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reflected by the sign change in the renormalized MAE. It is particularly noteworthy that in

the well-studied Fe on Cu(111) system, the ZPSF considerably fix the disagreement between

the experimental MAE (∼ −1 meV3,29) and the theoretical one, which is reduced from

K= −4.73 meV to K′ = −0.32 meV. Aside from the numerics, this feature demonstrates

that the renormalization of the MAE due to the ZPSF has the correct order of magnitude.

Finally, for the 4d TM elements Ru and Nb on Ag(100), where experiments remarkably

fail to measure sizable magnetic moments,18,30 the reduction of the MAE predicted by our

calculations is notably large (& 90%), indicating that the ZPSF can also play a major role

in the absence of stable magnetism observed experimentally.

We have performed a systematic investigation of the impact of transverse ZPSF on the

magnetic properties of TM adatoms deposited on metallic substrates. The magnitude of the

fluctuations has been accessed via the fluctuation-dissipation theorem, employing the spin-

susceptibility of the adatoms calculated ab initio within TDDFT. Our analysis has revealed

that the transverse ZPSF represent an appreciable fraction of the local magnetic moment of

the adatoms, therefore strongly affecting their spin-dynamics. We have identified the nature

of the three main ingredients that determine the magnitude of the fluctuations, namely the

(i) SOC, (ii) Stoner excitations and (iii) local magnetic moment itself, providing guidance

for future search for systems with high stability of the magnetic signal. Additionally, we

have shown that spin-fluctuations can strongly reduce the MAE of the adatoms, therefore

affecting their magnetic stability and sheding light on the controversies between previous

theoretical calculations and experimental observations.

Based on our investigation, we envision that the ideal adatom for technological applica-

tions, i.e. the magnetically most stable one, should not only posses a large magnetic moment

of possibly 4 − 5 µB, but also a large MAE and, above all, a very small damping (i.e. vir-

tually no Stoner excitations near the Fermi level) in order to drive the fluctuations to their

intrinsic quantum minimum. Within this scenario, the nearly half-filled elements Cr, Mn

and Mo emerge as the most promising candidates given that they strongly fulfill the first
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and third conditions; however, they exhibit a way too small MAE for real applications when

deposited on the Ag(100) and Cu(111) substrates here investigated. The challenge resides

therefore in tuning the anisotropy to its maximum value by modifying either the nature of

the substrate or the environment of the adatom (e.g. nanoislands, surface states, etc.), a

subject of intense ongoing investigation (see e.g. refs8,12,31,32).

The conclusions drawn by the single-adatom case studied in this work settle as a solid

background for tackling more complex nanomagnets constituted by several exchange-coupled

magnetic adatoms. This playground is particularly attractive given that, contrary to the

single-adatom case, several SP-STM experiments have reported an unambiguous observation

of stable magnetic moments in this type of composite system (see e.g. refs33,34), strongly

suggesting that local fluctuation effects decrease with increasing cluster size. Interestingly,

this feature is in qualitative accordance with one of our main findings in this work, namely

that the SFMR associated to the transverse ZPSF becomes smaller the larger the magnetic

moment gets. This general trend, however, is likely to be modified by characteristic features

associated to clusters, such as the appearance of optical modes in the spin-excitation spec-

trum (i.e. additional peaks in Imχ⊥(ω), see e.g. refs35,36) that would contribute to the ZPSF

as seen from Eq. 1. On top of this, the impact of the ZPSF on the magnetic interactions

among different adatoms remains to be fully explored and clarified. We believe that these

future steps, alongside with the ones already taken in this work, can crucially contribute to

current research efforts for understanding the spin dynamic phenomena of nanomagnets and

their stability.
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