000819947 001__ 819947
000819947 005__ 20210129224422.0
000819947 037__ $$aFZJ-2016-05519
000819947 041__ $$aEnglish
000819947 1001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b0$$eCorresponding author$$ufzj
000819947 1112_ $$aSecond International Legume Society Conference$$cTroia$$d2016-10-11 - 2016-10-14$$gILS2$$wPortugal
000819947 245__ $$aIn vivo monitoring of legume root and nodule development
000819947 260__ $$c2016
000819947 3367_ $$033$$2EndNote$$aConference Paper
000819947 3367_ $$2DataCite$$aOther
000819947 3367_ $$2BibTeX$$aINPROCEEDINGS
000819947 3367_ $$2DRIVER$$aconferenceObject
000819947 3367_ $$2ORCID$$aLECTURE_SPEECH
000819947 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1478079356_9984$$xAfter Call
000819947 520__ $$aQuantitative non-invasive measurement of structural and functional development of plant organs allows for deep phenotyping and dynamic investigation of plant performance under stress. While this can be done straightforward for leaves or stems other plant parts, such as seeds enclosed in pods or roots and nodules hidden in soil are more difficult to investigate. Their development however is critical for yield and performance under stress and direct observations in conjunction with genetic and metabolomics approaches may hint on the underlying mechanisms. Here, we apply a set of three non-invasive techniques for studying such developmental processes: 1) Low field nuclear magnetic resonance relaxometry with portable devices (pNMR) is used to study dry matter and water content in pods over periods of several weeks. 2) Magnetic Resonance Imaging (MRI) is used to study the structural development of roots and nodules in soil filled pots over several weeks. 3) Positron Emission Tomography (PET) with the short-lived radiotracer 11C is used to monitor the partitioning of photoassimilates and its dynamics among roots and nodules. We show the application of all three techniques to pea and bean plants grown in soil. We also discuss their potential to provide a direct view on the effects of genotype or rhizobial strain on plant performance under stress and on biological nitrogen fixation.
000819947 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000819947 536__ $$0G:(EU-Grant)613551$$aLEGATO - LEGumes for the Agriculture of TOmorrow (613551)$$c613551$$fFP7-KBBE-2013-7-single-stage$$x1
000819947 7001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b1$$ufzj
000819947 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel$$b2$$ufzj
000819947 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b3$$ufzj
000819947 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b4$$ufzj
000819947 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b5$$ufzj
000819947 909CO $$ooai:juser.fz-juelich.de:819947$$pec_fundedresources$$pVDB$$popenaire
000819947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b0$$kFZJ
000819947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b1$$kFZJ
000819947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich$$b2$$kFZJ
000819947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b3$$kFZJ
000819947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich$$b4$$kFZJ
000819947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich$$b5$$kFZJ
000819947 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000819947 9141_ $$y2016
000819947 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000819947 920__ $$lyes
000819947 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000819947 980__ $$aconf
000819947 980__ $$aVDB
000819947 980__ $$aUNRESTRICTED
000819947 980__ $$aI:(DE-Juel1)IBG-2-20101118