001     819947
005     20210129224422.0
037 _ _ |a FZJ-2016-05519
041 _ _ |a English
100 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Second International Legume Society Conference
|g ILS2
|c Troia
|d 2016-10-11 - 2016-10-14
|w Portugal
245 _ _ |a In vivo monitoring of legume root and nodule development
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1478079356_9984
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Quantitative non-invasive measurement of structural and functional development of plant organs allows for deep phenotyping and dynamic investigation of plant performance under stress. While this can be done straightforward for leaves or stems other plant parts, such as seeds enclosed in pods or roots and nodules hidden in soil are more difficult to investigate. Their development however is critical for yield and performance under stress and direct observations in conjunction with genetic and metabolomics approaches may hint on the underlying mechanisms. Here, we apply a set of three non-invasive techniques for studying such developmental processes: 1) Low field nuclear magnetic resonance relaxometry with portable devices (pNMR) is used to study dry matter and water content in pods over periods of several weeks. 2) Magnetic Resonance Imaging (MRI) is used to study the structural development of roots and nodules in soil filled pots over several weeks. 3) Positron Emission Tomography (PET) with the short-lived radiotracer 11C is used to monitor the partitioning of photoassimilates and its dynamics among roots and nodules. We show the application of all three techniques to pea and bean plants grown in soil. We also discuss their potential to provide a direct view on the effects of genotype or rhizobial strain on plant performance under stress and on biological nitrogen fixation.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a LEGATO - LEGumes for the Agriculture of TOmorrow (613551)
|0 G:(EU-Grant)613551
|c 613551
|f FP7-KBBE-2013-7-single-stage
|x 1
700 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 1
|u fzj
700 1 _ |a Windt, Carel
|0 P:(DE-Juel1)129422
|b 2
|u fzj
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 3
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 4
|u fzj
700 1 _ |a Jahnke, Siegfried
|0 P:(DE-Juel1)129336
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:819947
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129422
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129336
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21