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Laser-induced torques in metallic ferromagnets
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We study laser-induced torques in bcc Fe, hcp Co, and L10 FePt based on first-principles electronic structure

calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one

from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the

ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or

one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization

in order to investigate its relation to the torque. We find the torques and the perpendicular component of the

nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is

induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin

polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good

agreement between the calculated laser-induced torque and a recent experiment.

DOI: 10.1103/PhysRevB.94.144432

I. INTRODUCTION

Several mechanisms induce torques on the magnetization in

magnetically ordered materials when laser pulses are applied

[1]. When circularly polarized light is used, an effective

magnetic field parallel to the light wave vector acts on the

magnetization due to the inverse Faraday effect (IFE) [2]

[Fig. 1(a)]. The IFE is thought to play a crucial role in the

laser-induced magnetization reversal in ferromagnetic thin

films [3,4]. Additionally, there is a light-induced effective

magnetic field perpendicular to both the magnetization and

the light wave vector, which leads to the optical spin transfer

torque (OSTT) [5] [Fig. 1(b)]. Besides these nonthermal

effects, the laser-induced heating can also generate torques

due to heat-induced modifications of the magnetic anisotropy

fields [6]. Furthermore, laser pulses excite superdiffusive spin

currents in magnetic heterostructures [7–10], which mediate

spin-transfer torques when they flow from one magnetic layer

into another [11]. Finally, the laser-induced heating drives spin

currents due to the spin-dependent Seebeck effect, which leads

to thermal spin-transfer torques in metallic spin valves [12].

In the following we will consider only the effective

magnetic fields, torques, and nonequilibrium spin densities

related to the IFE and OSTT. In ferromagnets the light-

induced nonequilibrium spin density can generally exhibit a

component parallel to the equilibrium magnetization as well

as a perpendicular one. The perpendicular component exerts

a torque on the magnetization and tilts it. This laser-induced

torque has been investigated in metallic ferromagnets in recent

experiments [13,14]: In Co a 50-fs laser pulse with a fluence

of 1 mJ cm−2 induces an effective magnetic field whose

perpendicular component has been estimated at 0.2 T. One

experiment [13] was interpreted in terms of an initial out-of-

plane tilting of the magnetization due to an out-of-plane torque

[Fig. 1(b)], while the second experiment [14] was interpreted

in terms of an initial in-plane tilting due to an in-plane torque

[see Fig. 1(a)]. The out-of-plane tilting has been ascribed to

the OSTT, and the in-plane tilting is expected from the IFE.

*Corresponding author: f.freimuth@fz-juelich.de

Both experiments find that the magnetization is only tilted

when circularly polarized light is used and that the effect

changes sign when the helicity of the light is reversed. In both

experiments the Co layer is sufficiently thick (10 nm) to assume

that the laser-induced effective magnetic fields responsible for

the magnetization tilting can be modeled theoretically based

on the bulk electronic structure of Co, neglecting the Co/Pt

interface. In one experiment [13] the Pt capping layer mainly

serves to prevent oxidation of the Co layer. In the second

experiment [14] the inverse spin-orbit torque (ISOT) [15] due

to the structural inversion asymmetry at the Co/Pt interface is

exploited to convert the magnetization tilting into an interfacial

photocurrent.

On the theory side, for the special case of the light-

propagation direction parallel to the magnetization, light-

induced effective magnetic fields parallel to the magnetization

have been studied in transition-metal ferromagnets [16] with

ab initio methods as well as in the ferromagnetic Rashba

model [17]. Both theoretical works find that not only circularly

polarized light but also linearly polarized light induce effective

magnetic fields parallel to the magnetization. Moreover, it was

found that the light-induced spin polarization parallel to the

magnetization is almost helicity independent in Fe, Co, and Ni

[16]. Since, in contrast, the light-induced torques observed

experimentally are odd in the helicity [14], it seems that

effective magnetic fields perpendicular to the magnetization

direction depend differently on the light helicity than the

parallel component in these metallic ferromagnets.

In this work we use ab initio density functional the-

ory in order to study all components of the light-induced

nonequilibrium spin density and of the resulting torques and

effective magnetic fields in Fe, Co, and FePt. This allows

us to answer the two questions raised above: (i) Is the

laser-induced torque on the magnetization in Fig. 1 pointing in

the in-plane or out-of-plane direction? (ii) How do the parallel

and perpendicular components of the light-induced effective

magnetic field differ regarding their size and their dependence

on the light polarization?

This paper is structured as follows: In Sec. II we describe

our computational approach, which uses the Keldysh nonequi-

librium formalism to obtain the response in second order to
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FIG. 1. A circularly polarized light pulse propagates in the x

direction and hits a Co/Pt bilayer. The magnetization direction M̂ is

along the z axis. The laser-induced torque T has two components:

(a) The in-plane component T ip can be attributed to an effective

magnetic field B
eff
x in the x direction. T ip leads to an initial in-plane

tilt of M̂. (b) The out-of-plane component T oop can be attributed to

the y component B
eff
y of a laser-induced effective magnetic field and

leads to an initial out-of-plane tilt of M̂.

the electric field of the laser. Details of the derivation and

of the numerical implementation are given in Appendix A

and Appendix B, respectively. Before presenting our results in

Sec. III we first describe the computational parameters used

in the calculations in Sec. III A. In Sec. III B we discuss the

effective magnetic fields that give rise to the laser-induced

torques, and in Sec. III C we investigate the laser-induced

nonequilibrium spin density. We conclude with a summary

in Sec. IV.

II. COMPUTATIONAL METHOD

We use Kohn-Sham density functional theory to describe

interacting many-electron systems by the effective single-

particle Hamiltonian

H (r) = H0(r) − m · M̂�xc(r), (1)

where H0 contains kinetic energy, scalar potential, and spin-

orbit interaction (SOI), m = −µBσ is the spin magnetic

moment operator, µB is the Bohr magneton, σ = (σx,σy,σz)
T

is the vector of Pauli spin matrices, M̂ is a normalized vec-

tor parallel to the magnetization, �xc(r) = 1
2µB

[V eff
minority(r) −

V eff
majority(r)] is the exchange field, and V eff

minority(r) and

V eff
majority(r) are the effective potentials of minority and majority

electrons, respectively.

The interaction with the laser field is described by the

perturbation to the Hamiltonian

δH (t) = ev · A(t), (2)

where e is the elementary positive charge, v is the velocity

operator, and

A(t) = Re

[

E0ǫe
−iωt

iω

]

(3)

is the vector potential. The corresponding electric field of the

laser is

E(t) = −
∂ A(t)

∂t
= Re[E0ǫe

−iωt ], (4)

where ǫ is the light-polarization vector and E0 is the amplitude

of the electric field. We assume that E0 is real valued. However,

ǫ may be complex. For example, to describe left-circularly and

right-circularly polarized light propagating in the x direction

we use ǫ = (0,1,i)/
√

2 and ǫ = (0,1, − i)/
√

2, respectively.

The laser-induced change of spin polarization is given by

[17–20]

δS =
∫

d3r δs(r) =
�

2i
Tr[σG<], (5)

where G< is the lesser Green’s function. δS is the integral of the

nonequilibrium spin density δs(r) over the simulation volume,

i.e., the change of the total electron spin in the simulation

volume, when M̂ in Eq. (1) is kept fixed. The torque on the

magnetization due to the nonequilibrium spin density is given

by [15,21–23]

T =
2µB

�

∫

d3r �xc(r)δs(r) × M̂. (6)

Since the nonequilibrium spin density δs(r) and the exchange

field �xc(r) vary strongly on the atomic scale, it is generally

not possible to calculate T exactly from δS. Therefore, we

calculate the torque from

T = iTr[T G<], (7)

where T (r) = m × M̂�xc(r) is the torque operator [15,23–

26]. It is clear that the laser-induced nonequilibrium mag-

netization in paramagnets and diamagnets consists of both

spin and orbital contributions. Consequently, a recent ab initio

study on the IFE considered both spin and orbital parts of the

laser-induced nonequilibrium magnetization [16]. However, in

the present work we are mostly interested in the laser-induced

torques on the magnetization in ferromagnets, which are

determined by the nonequilibrium spin density according

to Eq. (6). While the laser-induced orbital magnetization

corresponds to orbital currents, which lead to magnetic fields

according to the Maxwell equations, the resulting torques

are negligible in comparison to the torques described by

Eq. (6). We therefore do not consider the laser-induced orbital

magnetization in this work.

In systems with broken inversion symmetry, T contains

a contribution that is first order in E(t), the so-called spin-

orbit torque (SOT) [15,23,24,26–28]. However, this first-

order contribution oscillates with frequency ω. Since the

light frequency ω is much higher than the ferromagnetic

resonance frequency, this oscillating contribution will not

induce significant magnetization dynamics. Therefore, we

consider the dc part in the response to a continuous laser

field. The contribution to T that is second order in E(t)

contains such static terms. They can arise, for example, from

the time-independent part E2
0Re[ǫiǫ

∗
j ]/2 in

Ei(t)Ej (t) =
E2

0

4
[ǫiǫ

∗
j + ǫ∗

i ǫj + ǫiǫje
−2iωt + ǫ∗

i ǫ
∗
j e

2iωt ]. (8)
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The dc correction of G< proportional to E2
0 can be conve-

niently derived within the Keldysh nonequilibrium formalism.

Details of the derivation are given in Appendix A. The resulting

torque is given by the expression

Ti =
a3

0I

c

(

EH

�ω

)2

Im
∑

jk

ǫjǫ
∗
k χijk, (9)

where c is the velocity of light, a0 = 4πǫ0�
2/(me2) is Bohr’s

radius, I = ǫ0cE
2
0/2 is the intensity of light, ǫ0 is the vacuum

permittivity, and EH = e2/(4πǫ0a0) is the Hartree energy. The

tensor χijk is given by

χijk =
2

N�a2
0EH

∑

k

∫

dE

× Tr
[

f (E)TiG
R
k (E)vjG

R
k (E − �ω)vkG

R
k (E)

− f (E)TiG
R
k (E)vjG

R
k (E − �ω)vkG

A
k (E)

+ f (E)TiG
R
k (E)vkG

R
k (E + �ω)vjG

R
k (E)

− f (E)TiG
R
k (E)vkG

R
k (E + �ω)vjG

A
k (E)

+ f (E − �ω)TiG
R
k (E)vjG

R
k (E − �ω)vkG

A
k (E)

+ f (E + �ω)TiG
R
k (E)vkG

R
k (E + �ω)vjG

A
k (E)

]

, (10)

where N is the number of k points used to sample the

Brillouin zone, f (E) is the Fermi distribution function, GR
k
(E)

is the retarded Green’s function, and GA
k

(E) = [GR
k
(E)]† is the

advanced Green’s function.

In collinear ferromagnets χijk is zero when SOI is not

included in the Hamiltonian. Formally, this can be deduced

from Eq. (10) as follows: In the absence of SOI, both the

Green’s functions and the velocity operators can be chosen to

be block-diagonal matrices with respect to the spin quantum

number, such that neither the Green’s functions nor the velocity

operators mix spin-up and spin-down states. In contrast, matrix

elements of the torque operator between spin-up states are

zero, and also the matrix elements between spin-down states

are zero; therefore, Eq. (10) evaluates to zero in the absence

of SOI.

In order to simulate disorder and finite lifetimes of the

electronic states we use the constant broadening Ŵ. Therefore,

the energy dependence of the Green’s function is known

analytically:

GR
k (E) = �

∑

n

|kn〉〈kn|
E − Ekn + iŴ

, (11)

where |kn〉 and Ekn are eigenstates and eigenenergies, respec-

tively, of the Hamiltonian in Eq. (1), i.e.,

H |kn〉 = Ekn|kn〉. (12)

This simple form of GR
k
(E) allows us to perform the energy

integrations in Eq. (10) analytically. The resulting expressions

are given in Appendix B for the case of zero temperature.

This constant broadening model of disorder is based purely

on the electronic structure of the ordered system and neglects

certain details of the scattering processes that are encoded in

vertex correction terms and in the band-off-diagonal terms of

the scattering self-energy. It models the band-diagonal terms

of the scattering self-energy by the band-independent and

k-independent constant Ŵ. Therefore, it can be thought of

as the “intrinsic” contribution, while mechanisms that depend

on the detailed structure of the scatterers, which is encoded in

vertex corrections and in the band-off-diagonal elements of the

scattering self-energy, constitute the “extrinsic” contribution.

When the scattering rate is small compared to the light

frequency, which is typically the case for transition metals,

extrinsic effects are expected to play a minor role.

The expressions that we use to evaluate the nonequilibrium

spin density δS, Eq. (5), are similar to Eqs. (9) and (10):

δSi = −
�

2

a3
0I

c

EH

(�ω)2
Im

∑

jk

ǫjǫ
∗
k χ̄ijk, (13)

where

χ̄ijk =
2

N�a2
0

∑

k

∫

dE

× Tr
[

f (E)σiG
R
k (E)vjG

R
k (E − �ω)vkG

R
k (E)

− f (E)σiG
R
k (E)vjG

R
k (E − �ω)vkG

A
k (E)

+ f (E)σiG
R
k (E)vkG

R
k (E + �ω)vjG

R
k (E)

− f (E)σiG
R
k (E)vkG

R
k (E + �ω)vjG

A
k (E)

+ f (E − �ω)σiG
R
k (E)vjG

R
k (E − �ω)vkG

A
k (E)

+ f (E + �ω)σiG
R
k (E)vkG

R
k (E + �ω)vjG

A
k (E)

]

. (14)

In collinear ferromagnets χ̄ijk is zero when SOI is not

included in the Hamiltonian. In the case of the spin components

perpendicular to the magnetization the arguments by which

this can be derived from Eq. (14) are the same as those

in the case of χijk discussed above: In the absence of

SOI, Green’s functions and velocity operators can be chosen

such that they do not mix spin-up and spin-down states,

while the matrix elements of the perpendicular component

of the spin operator are zero between spin-up states and also

between spin-down states. The induced spin parallel to the

magnetization arises from the change of the difference between

the number of spin-up electrons and the number of spin-down

electrons. However, in the absence of SOI, the number operator

of spin-up electrons commutes with the perturbation δH ,

and likewise, the number operator of spin-down electrons

commutes with δH . Therefore, also the spin induced parallel

to the magnetization is zero in collinear ferromagnets when

SOI is not included in the Hamiltonian.

Equations (10) and (14) hold for continuous laser beams.

Ultrashort laser pulses of 50-fs duration and light wavelength

of 800 nm correspond to roughly 20 oscillations of the electric

field vector. Therefore, the above formalism needs to be

extended to describe time-dependent rather than stationary

response functions in order to provide precise predictions of

experiments with ultrashort laser pulses. However, for the

discussion of torques and nonequilibrium spin polarization

induced by 50-fs laser pulses, results obtained for continuous

laser beams can serve as a useful estimate.
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III. RESULTS

A. Computational details

We employ the full-potential linearized augmented-plane-

wave (FLAPW) program FLEUR [29] in order to determine the

electronic structure of bcc Fe, L10 FePt, and hcp Co self-

consistently within the generalized gradient approximation

[30] to density functional theory. The experimental lattice con-

stants are used. In the case of Fe and FePt the crystallographic c

and a axes are aligned with the z and y directions, respectively

(Fig. 1 illustrates the coordinate frame). In the case of Co we

performed two calculations in order to assess the anisotropy of

the laser-induced torques: one calculation where the c axis is

aligned with the z direction and one where the c axis is aligned

with the x direction (in both calculations the a axis is in the y

direction).

In order to perform the Brillouin zone integrations in

Eqs. (10) and (14) computationally efficiently based on

the Wannier interpolation technique [31], we constructed

18 maximally localized Wannier functions (MLWFs) per

transition-metal atom from an 8 × 8 × 8 k mesh [32,33]. In

order to describe room-temperature experiments in Fe, FePt,

and Co, it is a very good approximation to set the temperature

in the Fermi distribution function f (E) in Eqs. (10) and (14)

to zero. Effects of room-temperature phonon scattering can

be modeled by the phenomenological broadening parameter Ŵ

in Eq. (11). The energy integrations in Eqs. (10) and (14) are

performed analytically, as described in Appendix B. We vary Ŵ

in the range from 5 meV to 0.4 eV. For this range of broadening

Ŵ we find that not more than 256 × 256 × 256 k points are

needed in order to converge the Brillouin zone sampling in

Eqs. (10) and (14).

B. Laser-induced torques

We discuss laser-induced torques for the laser intensity I =
10 GW/cm2. The photon energy is set to 1.55 eV. The light is

propagating into the x direction (as illustrated in Fig. 1), and

the polarization vector is ǫλ = (0,1,iλ)/
√

2, where λ = +1

and λ = −1 describe left- and right-circularly polarized light,

respectively. The magnetization is set along the z direction.

It is convenient to discuss the laser-induced torque T in

terms of the equivalent effective magnetic field B
eff that one

needs to apply in order to produce the same torque on the

magnetization. It is given by

B
eff =

T × M̂

µ
, (15)

where µ is the magnetic moment in the simulation volume. As

illustrated in Fig. 1, an in-plane torque along the y direction

corresponds to an effective magnetic field along the x direction,

and an out-of-plane torque along the −x direction corresponds

to an effective magnetic field along the y direction. The

effective field in the x direction Beff
x arises due to the IFE

in this case. The effective field in the y direction arises due to

the OSTT.

Figure 2 shows the laser-induced effective magnetic fields

in Fe, Co, and FePt. In the case of Co we show the results

of two different calculations: one where the crystallographic

c axis is in the z direction (c‖z) and one where it is in the x
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FIG. 2. Laser-induced effective magnetic fields Beff
x (left column)

and Beff
y (right column) in Fe, Co, and FePt as a function of broadening

Ŵ at I = 10 GW/cm2. M̂ is in the z direction. λ = + and λ = −
denote left- and right-circularly polarized light, respectively. In the

case of Co, results are shown for the c axis in the z direction (c‖z)

and the c axis in the x direction (c‖x).

direction (c‖x). Both Beff
x and Beff

y are odd in helicity λ. The

effective fields depend strongly on the broadening Ŵ, which

varies between 5 meV and 0.4 eV in Fig. 2. In Fe Beff
y is always

larger than Beff
x in the considered Ŵ range, while in FePt Beff

x

is always larger than Beff
y . In Co Beff

x dominates over Beff
y for

small and medium Ŵ, while for very large broadening Beff
y

becomes larger than Beff
x . In Co the component Beff

x exhibits a

strong anisotropy at small Ŵ.

In previous works we used Ŵ = 25 meV to model room-

temperature experiments on Co/Pt bilayers [23]. At Ŵ =
25 meV we find Beff

x = 118 mT and Beff
y = 0.23 mT in

Co for the c‖z case. For c‖x we find Beff
x = 194 mT and

Beff
y = 3.1 mT in Co. Similarly, large anisotropies have been

predicted for the anomalous Hall effect in Co [34]. At Ŵ =
25 meV the component Beff

x strongly dominates over Beff
y ,

leading to an initial in-plane tilt of the magnetization [see

Fig. 1(a)], consistent with the experimental interpretation

[14]. For a 50-fs laser pulse with a fluence of 1 mJ/cm2

[14], which corresponds to an intensity of the order of I ≈
1 mJ/cm2/(50 fs) = 20 GW/cm2, an effective field of 200 mT

in Co was estimated from experiments [14], corresponding

to roughly 100 mT at I = 10 GW/cm2. The experimental

geometry corresponds to the c‖x case in our simulation. Our

theoretical result of Beff
x = 194 mT is thus larger than the

experimental estimate by roughly a factor of 2. One potential

reason for the discrepancy is that laser pulses were used in the

experiment, while our simulation assumes a continuous laser

beam. Additionally, the effective magnetic field is strongly

Ŵ dependent according to our calculation, and any disorder

present in the 10-nm Co film used in the experiment might

144432-4
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M̂ is in the z direction. λ = + and λ = − denote left- and right-

circularly polarized light, respectively.

correspond to a value of Ŵ larger than 25 meV, which we

assumed in this comparison.

At Ŵ = 25 meV, Beff
x strongly dominates over Beff

y in Co and

FePt. On the other hand, the case of Fe shows that, generally,

Beff
x and Beff

y can be of similar magnitude in transition-metal

ferromagnets. If an Fe layer is used instead of the Co layer

in Fig. 1, the initial magnetization tilt will be a mixture

of in plane and out of plane according to our calculations.

While the helicity-dependent component of the photocurrent

in Co/Pt bilayers arises from an initial in-plane tilting [14]

combined with the odd component of the ISOT, out-of-plane

tilting also gives rise to photocurrents via the even ISOT

component [15]. The photocurrent density J induced by the

initial magnetization tilt in the bilayer geometry of Fig. 1 can

be written as [14]

J = −
γ todd

V
êx × [M̂ × B

eff]

−
γ teven

V
êx × [M̂ × (M̂ × B

eff)], (16)

where γ is the electron gyromagnetic factor, V is the volume,

êx is a unit vector along the x axis, and the coefficients todd

and teven characterize the odd and even components of the

SOT, respectively. When B
eff points in the x direction, the

photocurrent is proportional to todd, and when B
eff points in

the y direction, the photocurrent is proportional to teven. In

both cases the photocurrent is flowing along the magnetization

direction. Therefore, we expect that the helicity-dependent

component of the photocurrent in experiments analogous to

the ones in Ref. [14] but based on Fe/Pt bilayers contains

contributions from both the even and odd ISOTs. The differ-

ences in the effective fields B
eff between Fe, Co, and FePt

suggest that ferromagnetic materials can be designed such

that the IFE is zero and the OSTT is nonzero. Using such

materials in experiments analogous to the ones in Ref. [14]

would allow the contactless measurement of the even ISOT,

which contains information about the spin Hall effect, from

the helicity-odd component of the photocurrent. In fact, the

helicity-even component of the photocurrent is already used

for contactless measurement of the spin Hall effect [10].

In order to investigate the dependence of Beff
x and Beff

y

on SOI, we linearly scale the spin-orbit interaction in the

Hamiltonian with a factor ξ such that SOI is switched off for

ξ = 0 and that the full SOI is active for ξ = 1. Figure 3 shows

the laser-induced effective magnetic fields in Fe as a function of

ξ . When SOI is switched off, Beff
x and Beff

y vanish, which proves

that SOI is the origin of these laser-induced effective magnetic

fields. The strong ξ dependence suggests using materials with

large SOI in order to maximize the laser-induced torques.

Indeed, among the ferromagnets considered in this study, FePt

displays the largest values of Beff
x and Beff

y , which we attribute

to the strong SOI of Pt.

C. Laser-induced spin polarization

We discuss the laser-induced spin polarization for the laser

intensity I = 10 GW/cm2. The photon energy is set to 1.55 eV.

The light is propagating into the x direction (as illustrated

in Fig. 1), and the polarization vector is ǫλ = (0,1,iλ)/
√

2,

where λ = +1 and λ = −1 describe left- and right-circularly

polarized light, respectively. The magnetization is set along

the z direction.

We first discuss the two components of the laser-induced

spin polarization δS that are perpendicular to the magneti-

zation. These perpendicular components are expected to be

related to Beff
x and Beff

y discussed in the previous section.

Figure 4 shows that both δSx and δSy are odd in the helicity λ.

Due to Eq. (6) we expect similarities between Beff
x (Figure 2)

and δSx and between Beff
y and δSy . Indeed, in Fe δSj exhibits

the same qualitative dependence on Ŵ as its counterpart

Beff
j (j = x,y). Since the electron spin magnetic moment is

antiparallel to the electron spin, δSj and Beff
j are opposite in

sign for a given helicity λ. In FePt only Beff
x and δSx behave

similarly as a function of Ŵ, while Beff
y and δSy exhibit different

trends, notably a sign change in Beff
y that is absent in δSy . In

Co both δSx and δSy are strongly anisotropic for small Ŵ,
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FIG. 4. Laser-induced spin polarization δSx (left column) and δSy

(right column) in Fe, Co, and FePt as a function of broadening Ŵ at

I = 10 GW/cm2. M̂ is in the z direction. λ = + and λ = − denote

left- and right-circularly polarized light, respectively. In the case of

Co, results are shown for the c axis in the z direction (c‖z) and the c

axis in the x direction (c‖x).
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while only Beff
x displays strong anisotropy. These qualitative

differences between δSj and Beff
j illustrate the importance

of calculating the torques and effective magnetic fields from

Eq. (6), which takes into account that the exchange field varies

strongly on the atomic scale. On the other hand, in Fe, where

δSj and Beff
j behave very similarly, it is tempting to define an

effective exchange field �xc
eff by the equation

T =
2µB

�
�xc

effδS × M̂. (17)

The corresponding exchange splitting is

�Veff = 2µB�xc
eff = −

�µBeff
j

δSj

, (18)

where µ is the magnetic moment per unit cell. From our results

for Beff
j and δSj in Fe at Ŵ = 25 meV we obtain �Veff = 2.6 eV

for j = x and �Veff = 1.1 eV for j = y. The finding that we

obtain different values for j = x and j = y shows that Eq. (17)

cannot be used for precise calculations in Fe. However, since

�Veff has the expected order of magnitude of the exchange

splitting in Fe, one can indeed use Eq. (17) for rough estimates

of the torque T from the induced spin polarization δS in certain

cases.

Next, we discuss the laser-induced spin polarization δSz

along the magnetization direction, which is shown in Fig. 5.

We find δSz to be almost helicity independent. Recent ab initio

calculations for the case of the light-propagation direction

parallel to the magnetization also find the laser-induced spin

polarization along the magnetization direction to be almost

helicity independent [16]. However, in contrast to Ref. [16]

we consider the case of a light wave vector perpendicular to

the magnetization (see Fig. 1) in our calculations. Thus, the

laser-induced spin polarization parallel to the magnetization is

almost helicity independent irrespective of whether the light

wave vector is parallel or perpendicular to the magnetization in

these metallic ferromagnets. Interestingly, δSz reaches much

larger values than the two perpendicular components δSx
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FIG. 5. Laser-induced spin polarization δSz in Fe, Co, and FePt

as a function of broadening Ŵ at I = 10 GW/cm2. M̂ is in the z

direction. λ = + and λ = − denote left- and right-circularly polarized

light, respectively. In the case of Co, results are shown for the c axis

in the z direction (c‖z) and the c axis in the x direction (c‖x).

and δSy . For example, in FePt at Ŵ = 25 meV we find

δSz = 1.2 × 10−2
�/2 compared to only δSx = 9.2 × 10−5

�/2

and δSy = 1.3 × 10−5
�/2. In the case of Co δSz depends on

whether the c axis is in the x or z direction, but this anisotropy

is less striking than for δSx and δSy at small Ŵ.

IV. SUMMARY

We combine ab initio electronic structure calculations

with the Keldysh nonequilibrium formalism in order to study

laser-induced torques and nonequilibrium spin polarization in

bcc Fe, hcp Co, and L10 FePt. Our calculations show that both

IFE and OSTT are nonzero in these metallic ferromagnets. In

the case of Fe the torques due to the OSTT are larger than those

due to the IFE; in FePt the IFE dominates over the OSTT,

and in Co the IFE is dominant only for small and medium

quasiparticle broadenings. In view of this strong dependence

of the IFE/OSTT ratio on the ferromagnetic material and

the quasiparticle broadening (and hence the disorder in the

system) it should be possible to design materials such that

they display either IFE torques or OSTT but not both at the

same time. This allows the contactless measurement of various

spintronics effect in optical experiments. We find the torques

and the perpendicular component of the nonequilibrium spin

polarization to be odd in the helicity of the laser light,

while the spin polarization that is induced parallel to the

magnetization is helicity independent. This parallel component

of the nonequilibrium spin polarization can be orders of

magnitude larger than the perpendicular component. The

comparison between laser-induced torques and laser-induced

nonequilibrium spin density shows the importance of using

the torque operator for calculations of laser-induced torques

in realistic materials in order to capture the variation of the

exchange field on the atomic scale. We find that both the

laser-induced torques and the laser-induced nonequilibrium

spin polarization are anisotropic in hcp Co. In the case

of hcp Co we find good agreement between the calculated

laser-induced torque and a recent experiment.
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APPENDIX A: FORMALISM

The Green’s function G in the presence of the perturbing

laser field is obtained from the unperturbed Green’s function

Geq via the Dyson equation on the Keldysh contour [35]

G(1,1′) = Geq(1,1′) +
∫

d 2 Geq(1,2)
δH (2)

�
G(2,1′), (A1)

where δH is the perturbation equation (2) due to the electric

field of the laser. We iterate Eq. (A1) to obtain a power series

in δH and identify the term quadratic in δH . Applying the

Langreth theorem

(GGG)< = GRGRG< + GRG<GA + G<GAGA (A2)

144432-6



LASER-INDUCED TORQUES IN METALLIC FERROMAGNETS PHYSICAL REVIEW B 94, 144432 (2016)

to the term quadratic in δH , we obtain

G<
2 (t,t ′) =

∫

dt1

∫

dt2 GR
eq(t,t1)

δH (t1)

�
GR

eq(t1,t2)
δH (t2)

�
G<

eq(t2,t
′) +

∫

dt1

∫

dt2 GR
eq(t,t1)

δH (t1)

�
G<

eq(t1,t2)
δH (t2)

�
GA

eq(t2,t
′)

+
∫

dt1

∫

dt2 G<
eq(t,t1)

δH (t1)

�
GA

eq(t1,t2)
δH (t2)

�
GA

eq(t2,t
′). (A3)

Using

GR
eq(t,t ′) =

1

2π�

∫ ∞

−∞
dE e−iE(t−t ′)/�GR

eq(E) (A4)

and
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 e− i

�
E(t−t1)e−iω1t1e− i

�
E ′(t1−t2)e−iω2t2e− i

�
E ′′(t2−t ′) = h2δ(E − �ω1 − E ′)δ(E ′ − �ω2 − E ′′)e− i

�
E te

i
�
E ′′t ′ , (A5)

the time integration of the product of three Green’s functions can be performed easily:
∫

dt1

∫

dt2G
α
eq(t,t1)e−iω1t1Gα′

eq(t1,t2)e−iω2t2Gα′′

eq (t2,t) =
e−i[ω1+ω2]t

h

∫

dEGα
eq(E + �ω1)Gα′

eq(E)Gα′′

eq (E − �ω2), (A6)

where α,α′,α′′ = R,A, < and ω1,ω2 = ±ω. As discussed in Sec. II, we only need the dc component of G<
2 , which arises from

all terms with ω1 = −ω2 = ±ω. It is given by

G<
dc =

e2E2
0

8πω2�3

∫

dE
{

GR
eq(E − �ω)v · ǫ

∗GR
eq(E)v · ǫG<

eq(E − �ω) + GR
eq(E + �ω)v · ǫGR

eq(E)v · ǫ
∗G<

eq(E + �ω)

+GR
eq(E − �ω)v · ǫ

∗G<
eq(E)v · ǫGA

eq(E − �ω) + GR
eq(E + �ω)v · ǫG<

eq(E)v · ǫ
∗GA

eq(E + �ω)

+G<
eq(E − �ω)v · ǫ

∗GA
eq(E)v · ǫGA

eq(E − �ω) + G<
eq(E + �ω)v · ǫGA

eq(E)v · ǫ
∗GA

eq(E + �ω)
}

. (A7)

Substituting Eq. (A7) into Eq. (7) and using

G<
eq(E) = f (E)

[

GA
eq(E) − GR

eq(E)
]

(A8)

yield

T =
ie2E2

0

8πω2�3

∫

dEf (E)Tr{[T R�†R+�A] − [T R�†R+�R] + [T R�R−�†A] − [T R�R−�†R]

+ [T R−�†A�A−] − [T R−�†R�A−] + [T R+�A�†A+] − [T R+�R�†A+]

+ [T A�†A+�A] − [T R�†A+�A] + [T A�A−�†A] − [T R�A−�†A]}, (A9)

where we introduced the abbreviations � = v · ǫ, �† = [v · ǫ]† = v · ǫ
∗, R = GR

eq(E), A = GA
eq(E), R+ = GR

eq(E + �ω), A+ =
GA

eq(E + �ω), R− = GR
eq(E − �ω), and A− = GA

eq(E − �ω). Terms that contain more than one A can be rewritten as complex

conjugates of terms with more than one R:

T =
ie2E2

0

8πω2�3

∫

dEf (E)Tr{[T R�†R+�A] − [T R�†R+�R] + [T R�R−�†A] − [T R�R−�†R]

+ [T R−�†R�A−]∗ − [T R−�†R�A−] + [T R+�R�†A+]∗ − [T R+�R�†A+]

+ [T R�†R+�R]∗ − [T R�†R+�A]∗ + [T R�R−�†R]∗ − [T R�R−�†A]∗}. (A10)

Using the imaginary part to simplify the expression and introducing a Brillouin zone average over N k points, we finally obtain

T =
|e|2E2

0

4πω2�3N

∑

k

∫

dEImTr{f (E)[T Rk�R−
k
�†Rk + T Rk�

†R+
k
�Rk]

+ [f (E − �ω) − f (E)][T Rk�R−
k
�†Ak] + [f (E + �ω) − f (E)][T Rk�

†R+
k
�Ak]}

=
a3

0I

c

(

EH

�ω

)2

Im
∑

ijk

êi(êj · ǫ)(êk · ǫ
∗)χijk, (A11)

where ê1, ê2, and ê3 are unit vectors along the x, y, and z axes, respectively. The coefficient χijk = χ
(1)
ijk + χ

(2)
ijk is given by

χ
(1)
ijk =

2

N�a2
0EH

∑

k

∫

dETr{[f (E − �ω) − f (E)][TiRkvjR
−
k
vkAk] + [f (E + �ω) − f (E)][TiRkvkR

+
k
vjAk]} (A12)
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and

χ
(2)
ijk =

2

N�a2
0EH

∑

k

∫

dEf (E)Tr[TiRkvjR
−
k
vkRk + TiRkvkR

+
k
vjRk]. (A13)

APPENDIX B: EXPRESSIONS AT T = 0 K

In the present paper we use the constant broadening Ŵ in order to simulate disorder and finite lifetimes of the electronic states.

Therefore, the energy dependence of the Green’s function is known analytically:

Rk = GR
k (E) = �

∑

n

|kn〉〈kn|
E − Ekn + iŴ

. (B1)

This simple form of GR
k
(E) allows us to perform the energy integrations in Eqs. (A12) and (A13) analytically. We discuss only the

zero-temperature limit and therefore replace the Fermi function by the Heaviside step function as f (E) = θ (EF − E), where EF is

the Fermi energy. Thus, we need the following two integrals for the evaluation of Eqs. (A12) and (A13) in the zero-temperature

limit:

I1(E1,E2,E3,E4) =
∫ E4

−∞

E2
H dE

(E − E1 + iŴ)(E − E2 + iŴ)(E − E3 + iŴ)
(B2)

and

I2(E1,E2,E3,E4) =
∫ E4

−∞

E2
H dE

(E − E1 + iŴ)(E − E2 + iŴ)(E − E3 − iŴ)
. (B3)

In terms of I1(E1,E2,E3,E4) and I2(E1,E2,E3,E4) the coefficients χ
(1)
ijk and χ

(2)
ijk can be expressed as follows:

χ
(1)
ijk =

2

N

∑

knmm′

Im
{

[I2(Ekm,Ekm′ + �ω,Ekn,EF + �ω) − I2(Ekm,Ekm′ + �ω,Ekn,EF)]Mnmm′

ijk

+ [I2(Ekm,Ekm′ − �ω,Ekn,EF − �ω) − I2(Ekm,Ekm′ − �ω,Ekn,EF)]Mnmm′

ikj

}

(B4)

and

χ
(2)
ijk =

2

N

∑

knmm′

Im
{

I1(Ekm,Ekm′ + �ω,Ekn,EF)Mnmm′

ijk + I1(Ekm,Ekm′ − �ω,Ekn,EF)Mnmm′

ikj

}

, (B5)

where

Mnmm′

ijk =
〈kn|Ti |km〉〈km|vj |km′〉〈km′|vk|kn〉

EH

[

a0
EH

�

]2
. (B6)

The integrations in Eqs. (B2) and (B3) can be performed analytically. In the general case of E1 
= E2 
= E3 
= E1 we obtain

I1(E1,E2,E3,E4) =
E2

H

2(E1 − E2)(E1 − E3)
ln

[

1 +
(E1 − E4)2

Ŵ2

]

+
E2

H

2(E2 − E3)(E2 − E1)
ln

[

1 +
(E2 − E4)2

Ŵ2

]

+
E2

H

2(E3 − E1)(E3 − E2)
ln

[

1 +
(E3 − E4)2

Ŵ2

]

+
E2

H

i(E1 − E2)(E1 − E3)
arctan

E4 − E1

Ŵ

+
E2

H

i(E2 − E3)(E2 − E1)
arctan

E4 − E2

Ŵ
+

E2
H

i(E3 − E1)(E3 − E2)
arctan

E4 − E3

Ŵ
(B7)

and

I2(E1,E2,E3,E4) =
E2

H

2(E1 − E2)(E1 − E3 − 2iŴ)
ln

[

1 +
(E1 − E4)2

Ŵ2

]

+
E2

H

2(E2 − E3 − 2iŴ)(E2 − E1)
ln

[

1 +
(E2 − E4)2

Ŵ2

]

+
E2

H

2(E3 − E1 + 2iŴ)(E3 − E2 + 2iŴ)
ln

[

1 +
(E3 − E4)2

Ŵ2

]

+
iE2

H

(E1 − E2)(E3 − E1 + 2iŴ)

×
[

π

2
+ arctan

E4 − E1

Ŵ

]

+
iE2

H

(E3 − E2 + 2iŴ)(E2 − E1)

[

π

2
+ arctan

E4 − E2

Ŵ

]

+
iE2

H

(E3 − E1 + 2iŴ)(E3 − E2 + 2iŴ)

[

π

2
+ arctan

E4 − E3

Ŵ

]

. (B8)
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Due to the energy denominators in Eq. (B7), numerical difficulties can arise when E1 
= E2 
= E3 
= E1 is not satisfied.

Therefore, when E1 = E2 
= E3 we use instead of Eq. (B7) the expression

I1(E1,E1,E3,E4) =
E2

H

2(E1 − E3)2
ln

[

Ŵ2 + (E3 − E4)2

Ŵ2 + (E1 − E4)2

]

+
E2

H

i(E1 − E3)2

[

arctan
E4 − E3

Ŵ
− arctan

E4 − E1

Ŵ

]

+
E2

H

(E3 − E1)(E4 − E1 + iŴ)
. (B9)

Applying I1(E1,E1,E3,E4) = I1(E1,E3,E1,E4) = I1(E3,E1,E1,E4) to Eq. (B9), one readily obtains expressions for I1(E1,E2,E3,E4)

that can be used in the special cases E1 
= E2 = E3 and E1 = E3 
= E2.

Similarly, when E1 = E2, we do not use Eq. (B8), but instead

I2(E1,E1,E3,E4) =
E2

H

2(E1 − E3 − 2iŴ)2
ln

[

Ŵ2 + (E3 − E4)2

Ŵ2 + (E1 − E4)2

]

+
i E2

H

(E1 − E3 − 2iŴ)2

[

π

2
+ arctan

E4 − E3

Ŵ

]

+
i E2

H

(E1 − E3 − 2iŴ)2

[

π

2
+ arctan

E4 − E1

Ŵ

]

+
E2

H

(E3 − E1 + 2iŴ)(E4 − E1 + iŴ)
. (B10)

In the special case E1 = E2 = E3 we use

I1(E1,E1,E1,E4) = −
E2

H

2(E4 − E1 + iŴ)2
. (B11)
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S. Blügel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella,

Nat. Nanotechnol. 8, 587 (2013).

[28] C. Ciccarelli, L. Anderson, V. Tshitoyan, A. J. Ferguson, F.

Gerhard, C. Gould, L. W. Molenkamp, J. Gayles, J. Zelezny, L.

Smejkal et al., Nat. Phys. 12, 855 (2016).

[29] FLEUR, http://www.flapw.de.

144432-9
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