000820383 001__ 820383
000820383 005__ 20240619091215.0
000820383 0247_ $$2doi$$a10.1016/j.biomaterials.2016.08.029
000820383 0247_ $$2ISSN$$a0142-9612
000820383 0247_ $$2ISSN$$a1878-5905
000820383 0247_ $$2WOS$$aWOS:000383934300020
000820383 037__ $$aFZJ-2016-05714
000820383 082__ $$a570
000820383 1001_ $$0P:(DE-Juel1)156284$$aChen, La$$b0
000820383 245__ $$aStatistical study of biomechanics of living brain cells during growth and maturation on artificial substrates
000820383 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000820383 3367_ $$2DRIVER$$aarticle
000820383 3367_ $$2DataCite$$aOutput Types/Journal article
000820383 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478093679_9984
000820383 3367_ $$2BibTeX$$aARTICLE
000820383 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820383 3367_ $$00$$2EndNote$$aJournal Article
000820383 520__ $$aThere is increasing evidence that mechanical issues play a vital role in neuron growth and brain development. The importance of this grows as novel devices, whose material properties differ from cells, are increasingly implanted in the body. In this work, we studied the mechanical properties of rat brain cells over time and on different materials by using a high throughput magnetic tweezers system. It was found that the elastic moduli of both neurite and soma in networked neurons increased with growth. However, neurites at DIV4 exhibited a relatively high stiffness, which could be ascribed to the high outgrowth tension. The power-law exponents (viscoelasticity) of both neurites and somas of neurons decreased with culture time. On the other hand, the stiffness of glial cells also increased with maturity. Furthermore, both neurites and glia become softer when cultured on compliant substrates. Especially, the glial cells cultured on a soft substrate obviously showed a less dense and more porous actin and GFAP mesh. In addition, the viscoelasticity of both neurites and glia did not show a significant dependence on the substrates' stiffness.
000820383 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000820383 588__ $$aDataset connected to CrossRef
000820383 7001_ $$0P:(DE-Juel1)157679$$aLi, Wenfang$$b1
000820383 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b2
000820383 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b3
000820383 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b4$$eCorresponding author
000820383 773__ $$0PERI:(DE-600)2004010-6$$a10.1016/j.biomaterials.2016.08.029$$gVol. 106, p. 240 - 249$$p240 - 249$$tBiomaterials$$v106$$x0142-9612$$y2016
000820383 8564_ $$uhttps://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.pdf$$yRestricted
000820383 8564_ $$uhttps://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.gif?subformat=icon$$xicon$$yRestricted
000820383 8564_ $$uhttps://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820383 8564_ $$uhttps://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820383 8564_ $$uhttps://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820383 8564_ $$uhttps://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820383 909CO $$ooai:juser.fz-juelich.de:820383$$pVDB
000820383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156284$$aForschungszentrum Jülich$$b0$$kFZJ
000820383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157679$$aForschungszentrum Jülich$$b1$$kFZJ
000820383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b2$$kFZJ
000820383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b3$$kFZJ
000820383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b4$$kFZJ
000820383 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000820383 9141_ $$y2016
000820383 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820383 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000820383 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820383 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820383 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMATERIALS : 2015
000820383 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820383 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820383 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820383 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820383 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOMATERIALS : 2015
000820383 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820383 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820383 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820383 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820383 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820383 920__ $$lyes
000820383 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000820383 980__ $$ajournal
000820383 980__ $$aVDB
000820383 980__ $$aUNRESTRICTED
000820383 980__ $$aI:(DE-Juel1)ICS-8-20110106
000820383 981__ $$aI:(DE-Juel1)IBI-3-20200312