001     820383
005     20240619091215.0
024 7 _ |a 10.1016/j.biomaterials.2016.08.029
|2 doi
024 7 _ |a 0142-9612
|2 ISSN
024 7 _ |a 1878-5905
|2 ISSN
024 7 _ |a WOS:000383934300020
|2 WOS
037 _ _ |a FZJ-2016-05714
082 _ _ |a 570
100 1 _ |a Chen, La
|0 P:(DE-Juel1)156284
|b 0
245 _ _ |a Statistical study of biomechanics of living brain cells during growth and maturation on artificial substrates
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1478093679_9984
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a There is increasing evidence that mechanical issues play a vital role in neuron growth and brain development. The importance of this grows as novel devices, whose material properties differ from cells, are increasingly implanted in the body. In this work, we studied the mechanical properties of rat brain cells over time and on different materials by using a high throughput magnetic tweezers system. It was found that the elastic moduli of both neurite and soma in networked neurons increased with growth. However, neurites at DIV4 exhibited a relatively high stiffness, which could be ascribed to the high outgrowth tension. The power-law exponents (viscoelasticity) of both neurites and somas of neurons decreased with culture time. On the other hand, the stiffness of glial cells also increased with maturity. Furthermore, both neurites and glia become softer when cultured on compliant substrates. Especially, the glial cells cultured on a soft substrate obviously showed a less dense and more porous actin and GFAP mesh. In addition, the viscoelasticity of both neurites and glia did not show a significant dependence on the substrates' stiffness.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Wenfang
|0 P:(DE-Juel1)157679
|b 1
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 2
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 3
700 1 _ |a Krause, Hans-Joachim
|0 P:(DE-Juel1)128697
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.biomaterials.2016.08.029
|g Vol. 106, p. 240 - 249
|0 PERI:(DE-600)2004010-6
|p 240 - 249
|t Biomaterials
|v 106
|y 2016
|x 0142-9612
856 4 _ |u https://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820383/files/1-s2.0-S0142961216304161-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820383
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156284
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157679
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128697
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMATERIALS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOMATERIALS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21