000820456 001__ 820456 000820456 005__ 20210129224505.0 000820456 0247_ $$2doi$$a10.1016/j.tplants.2016.10.002 000820456 0247_ $$2ISSN$$a1360-1385 000820456 0247_ $$2ISSN$$a1878-4372 000820456 0247_ $$2WOS$$aWOS:000389098000001 000820456 0247_ $$2altmetric$$aaltmetric:13411094 000820456 0247_ $$2pmid$$apmid:27810146 000820456 037__ $$aFZJ-2016-05766 000820456 041__ $$aEnglish 000820456 082__ $$a570 000820456 1001_ $$0P:(DE-HGF)0$$aTsaftaris, Sotirios A.$$b0$$eCorresponding author 000820456 245__ $$aMachine Learning for Plant Phenotyping Needs Image Processing 000820456 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016 000820456 3367_ $$2DRIVER$$aarticle 000820456 3367_ $$2DataCite$$aOutput Types/Journal article 000820456 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480490327_25247 000820456 3367_ $$2BibTeX$$aARTICLE 000820456 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000820456 3367_ $$00$$2EndNote$$aJournal Article 000820456 520__ $$aWe found the article by Singh et al. [1] extremely interesting because it introduces and showcases the utility of machine learning for high-throughput data-driven plant phenotyping. With this letter we aim to emphasize the role that image analysis and processing have in the phenotyping pipeline beyond what is suggested in [1], both in analyzing phenotyping data (e.g., to measure growth) and when providing effective feature extraction to be used by machine learning. Key recent reviews have shown that it is image analysis itself (what the authors of [1] consider as part of pre-processing) that has brought a renaissance in phenotyping [2]. At the same time, the lack of robust methods to analyze these images is now the new bottleneck 3, 4 and 5 – and this bottleneck is not easy to overcome. As the following aims to illustrate, it is coupled not only to the imaging system and the environment but also to the analytical task at hand, and requires new skills to help deal with the challenges introduced.A successful high-throughput image-based phenotyping system starts with the imaging approach itself. The choices are to image many plants simultaneously or one plant at a time, requiring movable systems to bring the plant to the camera or vice versa. These systems add cost but have the benefit of isolating the object of interest. In turn, this simplifies its processing, for example facilitating object segmentation, in other words the image analysis process isolating the plant from background (e.g., soil), as Figure 1A shows (many image-processing tasks are related to how we perceive and analyze an object of interest, such as segmentation, detection, tracking, and many others). 000820456 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000820456 588__ $$aDataset connected to CrossRef 000820456 7001_ $$0P:(DE-HGF)0$$aMinervini, Massimo$$b1 000820456 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b2$$ufzj 000820456 773__ $$0PERI:(DE-600)2011003-0$$a10.1016/j.tplants.2016.10.002$$gp. S1360138516301613$$n12$$p989–991$$tTrends in plant science$$v21$$x1360-1385$$y2016 000820456 8564_ $$uhttps://juser.fz-juelich.de/record/820456/files/1-s2.0-S1360138516301613-main.pdf$$yRestricted 000820456 8564_ $$uhttps://juser.fz-juelich.de/record/820456/files/1-s2.0-S1360138516301613-main.gif?subformat=icon$$xicon$$yRestricted 000820456 8564_ $$uhttps://juser.fz-juelich.de/record/820456/files/1-s2.0-S1360138516301613-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000820456 8564_ $$uhttps://juser.fz-juelich.de/record/820456/files/1-s2.0-S1360138516301613-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000820456 8564_ $$uhttps://juser.fz-juelich.de/record/820456/files/1-s2.0-S1360138516301613-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000820456 8564_ $$uhttps://juser.fz-juelich.de/record/820456/files/1-s2.0-S1360138516301613-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000820456 909CO $$ooai:juser.fz-juelich.de:820456$$pVDB 000820456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b2$$kFZJ 000820456 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000820456 9141_ $$y2016 000820456 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000820456 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000820456 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000820456 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000820456 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS PLANT SCI : 2015 000820456 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bTRENDS PLANT SCI : 2015 000820456 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000820456 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000820456 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000820456 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings 000820456 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000820456 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000820456 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000820456 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000820456 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000820456 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000820456 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000820456 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000820456 980__ $$ajournal 000820456 980__ $$aVDB 000820456 980__ $$aUNRESTRICTED 000820456 980__ $$aI:(DE-Juel1)IBG-2-20101118