000820467 001__ 820467
000820467 005__ 20220930130108.0
000820467 0247_ $$2doi$$a10.1016/j.cpc.2016.08.010
000820467 0247_ $$2ISSN$$a0010-4655
000820467 0247_ $$2ISSN$$a1386-9485
000820467 0247_ $$2ISSN$$a1879-2944
000820467 0247_ $$2Handle$$a2128/12670
000820467 0247_ $$2WOS$$aWOS:000386743300005
000820467 0247_ $$2altmetric$$aaltmetric:7565132
000820467 037__ $$aFZJ-2016-05777
000820467 082__ $$a004
000820467 1001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b0
000820467 245__ $$aThe digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments
000820467 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2016
000820467 3367_ $$2DRIVER$$aarticle
000820467 3367_ $$2DataCite$$aOutput Types/Journal article
000820467 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478270296_17704
000820467 3367_ $$2BibTeX$$aARTICLE
000820467 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820467 3367_ $$00$$2EndNote$$aJournal Article
000820467 520__ $$aUsing Einstein–Podolsky–Rosen–Bohm experiments as an example, we demonstrate that the combination of a digital computer and algorithms, as a metaphor for a perfect laboratory experiment, provides solutions to problems of the foundations of physics. Employing discrete-event simulation, we present a counterexample to John Bell’s remarkable “proof” that any theory of physics, which is both Einstein-local and “realistic” (counterfactually definite), results in a strong upper bound to the correlations that are being measured in Einstein–Podolsky–Rosen–Bohm experiments. Our counterexample, which is free of the so-called detection-, coincidence-, memory-, and contextuality loophole, violates this upper bound and fully agrees with the predictions of quantum theory for Einstein–Podolsky–Rosen–Bohm experiments.
000820467 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000820467 588__ $$aDataset connected to CrossRef
000820467 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b1$$eCorresponding author
000820467 7001_ $$0P:(DE-HGF)0$$aHess, Karl$$b2
000820467 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2016.08.010$$gVol. 209, p. 42 - 47$$p42 - 47$$tComputer physics communications$$v209$$x0010-4655$$y2016
000820467 8564_ $$uhttps://juser.fz-juelich.de/record/820467/files/1-s2.0-S0010465516302405-main.pdf$$yOpenAccess
000820467 8564_ $$uhttps://juser.fz-juelich.de/record/820467/files/1-s2.0-S0010465516302405-main.gif?subformat=icon$$xicon$$yOpenAccess
000820467 8564_ $$uhttps://juser.fz-juelich.de/record/820467/files/1-s2.0-S0010465516302405-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820467 8564_ $$uhttps://juser.fz-juelich.de/record/820467/files/1-s2.0-S0010465516302405-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820467 8564_ $$uhttps://juser.fz-juelich.de/record/820467/files/1-s2.0-S0010465516302405-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820467 8564_ $$uhttps://juser.fz-juelich.de/record/820467/files/1-s2.0-S0010465516302405-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820467 8767_ $$8W1350540$$92019-09-01$$d2016-09-26$$eHybrid-OA$$jZahlung erfolgt
000820467 909CO $$ooai:juser.fz-juelich.de:820467$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000820467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b1$$kFZJ
000820467 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000820467 9141_ $$y2016
000820467 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820467 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820467 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000820467 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2015
000820467 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820467 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820467 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820467 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820467 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820467 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820467 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820467 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820467 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820467 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820467 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000820467 980__ $$ajournal
000820467 980__ $$aVDB
000820467 980__ $$aUNRESTRICTED
000820467 980__ $$aI:(DE-Juel1)JSC-20090406
000820467 9801_ $$aFullTexts
000820467 980__ $$aAPC