001     820508
005     20240625095121.0
024 7 _ |a 10.1002/pro.2941
|2 doi
024 7 _ |a 0961-8368
|2 ISSN
024 7 _ |a 1469-896X
|2 ISSN
024 7 _ |a WOS:000380068700009
|2 WOS
024 7 _ |a altmetric:19200423
|2 altmetric
024 7 _ |a pmid:27110669
|2 pmid
037 _ _ |a FZJ-2016-05801
082 _ _ |a 610
100 1 _ |a Cong, Xiaojing
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Engineered human angiogenin mutations in the placental ribonuclease inhibitor complex for anticancer therapy: Insights from enhanced sampling simulations
260 _ _ |a Hoboken, NJ
|c 2016
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1478268677_17692
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Targeted human cytolytic fusion proteins (hCFPs) represent a new generation of immunotoxins (ITs) for the specific targeting and elimination of malignant cell populations. Unlike conventional ITs, hCFPs comprise a human/humanized target cell-specific binding moiety (e.g., an antibody or a fragment thereof) fused to a human proapoptotic protein as the cytotoxic domain (effector domain). Therefore, hCFPs are humanized ITs expected to have low immunogenicity. This reduces side effects and allows long-term application. The human ribonuclease angiogenin (Ang) has been shown to be a promising effector domain candidate. However, the application of Ang-based hCFPs is largely hampered by the intracellular placental ribonuclease inhibitor (RNH1). It rapidly binds and inactivates Ang. Mutations altering Ang's affinity for RNH1 modulate the cytotoxicity of Ang-based hCFPs. Here we perform in total 2.7 µs replica-exchange molecular dynamics simulations to investigate some of these mutations—G85R/G86R (GGRRmut), Q117G (QGmut), and G85R/G86R/Q117G (GGRR/QGmut). GGRRmut turns out to perturb greatly the overall Ang-RNH1 interactions, whereas QGmut optimizes them. Combining QGmut with GGRRmut compensates the effects of the latter. Our results explain the in vitro finding that, while Ang GGRRmut-based hCFPs resist RNH1 inhibition remarkably, Ang WT- and Ang QGmut-based ones are similarly sensitive to RNH1 inhibition, whereas Ang GGRR/QGmut-based ones are only slightly resistant. This work may help design novel Ang mutants with reduced affinity for RNH1 and improved cytotoxicity.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cremer, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nachreiner, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Barth, Stefan
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 4
|e Corresponding author
773 _ _ |a 10.1002/pro.2941
|g Vol. 25, no. 8, p. 1451 - 1460
|0 PERI:(DE-600)2000025-X
|n 8
|p 1451 - 1460
|t Protein science
|v 25
|y 2016
|x 0961-8368
856 4 _ |u https://juser.fz-juelich.de/record/820508/files/Cong_et_al-2016-Protein_Science.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820508/files/Cong_et_al-2016-Protein_Science.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820508/files/Cong_et_al-2016-Protein_Science.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820508/files/Cong_et_al-2016-Protein_Science.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820508/files/Cong_et_al-2016-Protein_Science.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820508/files/Cong_et_al-2016-Protein_Science.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820508
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROTEIN SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21