001     820509
005     20240625095121.0
024 7 _ |a 10.1021/acs.jctc.5b01126
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a WOS:000381320200059
|2 WOS
024 7 _ |a altmetric:9907572
|2 altmetric
024 7 _ |a pmid:27392273
|2 pmid
037 _ _ |a FZJ-2016-05802
082 _ _ |a 540
100 1 _ |a Ghaemi, Zhaleh
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Permeability Coefficients of Lipophilic Compounds Estimated by Computer Simulations
260 _ _ |a Washington, DC
|c 2016
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1478268823_17699
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ability of a drug to cross the intestine–blood barrier is a key quantity for drug design and employment and is normally quantified by the permeability coefficient P, often evaluated in the so-called Caco-2 assay. This assay is based on measuring the initial growth rate of the concentration of the drug beyond the cellular barrier but not its steady-state flux through the membrane. This might lead to confusion since, in the case of lipophilic drugs, the initial slope is strongly affected by the retention of the drug in the membrane. This effect is well known but seldom considered in the assay. Here, we exploit all-atoms molecular dynamics and bias exchange metadynamics to calculate the concentration of two lipophilic drugs across a model membrane as a function of time. This allows estimating both the steady-state flux and the initial slope of the concentration growth and comparing Caco-2 and steady-state estimates of P. We show that our computational procedure is able to reproduce the experimental values, although these may differ from the permeability coefficients by orders of magnitude. Our findings are generalized by a simplified one-dimensional model of the permeation process that may act as a roadmap to assess which measure of membrane permeability would be more appropriate and, consequently, whether retention corrections should be included in estimates based on Caco-2 assays.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Alberga, Domenico
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 2
700 1 _ |a Laio, Alessandro
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lattanzi, Gianluca
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acs.jctc.5b01126
|g Vol. 12, no. 8, p. 4093 - 4099
|0 PERI:(DE-600)2166976-4
|n 8
|p 4093 - 4099
|t Journal of chemical theory and computation
|v 12
|y 2016
|x 1549-9626
856 4 _ |u https://juser.fz-juelich.de/record/820509/files/acs.jctc.5b01126.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820509/files/acs.jctc.5b01126.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820509/files/acs.jctc.5b01126.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820509/files/acs.jctc.5b01126.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820509/files/acs.jctc.5b01126.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820509/files/acs.jctc.5b01126.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820509
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21