001     820513
005     20240625095121.0
024 7 _ |a 10.1093/nar/gkw128
|2 doi
024 7 _ |a 0261-3166
|2 ISSN
024 7 _ |a 0305-1048
|2 ISSN
024 7 _ |a 1362-4962
|2 ISSN
024 7 _ |a 1746-8272
|2 ISSN
024 7 _ |a 2128/12668
|2 Handle
024 7 _ |a WOS:000374570500036
|2 WOS
024 7 _ |a altmetric:6040350
|2 altmetric
024 7 _ |a pmid:26935581
|2 pmid
037 _ _ |a FZJ-2016-05806
082 _ _ |a 540
100 1 _ |a Genna, Vito
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η
260 _ _ |a Oxford
|c 2016
|b Oxford Univ. Press69994
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1478269227_17694
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gaspari, Roberto
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dal Peraro, Matteo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a De Vivo, Marco
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1093/nar/gkw128
|g Vol. 44, no. 6, p. 2827 - 2836
|0 PERI:(DE-600)2205588-5
|n 6
|p 2827 - 2836
|t Nucleic acids symposium series
|v 44
|y 2016
|x 1362-4962
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/820513/files/Nucl.%20Acids%20Res.-2016-Genna-2827-36.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/820513/files/Nucl.%20Acids%20Res.-2016-Genna-2827-36.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/820513/files/Nucl.%20Acids%20Res.-2016-Genna-2827-36.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/820513/files/Nucl.%20Acids%20Res.-2016-Genna-2827-36.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/820513/files/Nucl.%20Acids%20Res.-2016-Genna-2827-36.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/820513/files/Nucl.%20Acids%20Res.-2016-Genna-2827-36.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:820513
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCLEIC ACIDS RES : 2015
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NUCLEIC ACIDS RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21