001     820516
005     20240625095122.0
024 7 _ |a 10.1021/acs.jmedchem.5b01684
|2 doi
024 7 _ |a 0022-2623
|2 ISSN
024 7 _ |a 0095-9065
|2 ISSN
024 7 _ |a 1520-4804
|2 ISSN
024 7 _ |a 1943-2992
|2 ISSN
024 7 _ |a WOS:000375969200002
|2 WOS
024 7 _ |a altmetric:5049162
|2 altmetric
024 7 _ |a pmid:26807648
|2 pmid
037 _ _ |a FZJ-2016-05808
082 _ _ |a 540
100 1 _ |a De Vivo, Marco
|0 P:(DE-Juel1)167585
|b 0
|e Corresponding author
245 _ _ |a Role of Molecular Dynamics and Related Methods in Drug Discovery
260 _ _ |a Washington, DC
|c 2016
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1478269481_17699
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular dynamics (MD) and related methods are close to becoming routine computational tools for drug discovery. Their main advantage is in explicitly treating structural flexibility and entropic effects. This allows a more accurate estimate of the thermodynamics and kinetics associated with drug–target recognition and binding, as better algorithms and hardware architectures increase their use. Here, we review the theoretical background of MD and enhanced sampling methods, focusing on free-energy perturbation, metadynamics, steered MD, and other methods most consistently used to study drug–target binding. We discuss unbiased MD simulations that nowadays allow the observation of unsupervised ligand–target binding, assessing how these approaches help optimizing target affinity and drug residence time toward improved drug efficacy. Further issues discussed include allosteric modulation and the role of water molecules in ligand binding and optimization. We conclude by calling for more prospective studies to attest to these methods’ utility in discovering novel drug candidates.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Masetti, Matteo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bottegoni, Giovanni
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cavalli, Andrea
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.jmedchem.5b01684
|g Vol. 59, no. 9, p. 4035 - 4061
|0 PERI:(DE-600)1491411-6
|n 9
|p 4035 - 4061
|t Journal of medicinal chemistry
|v 59
|y 2016
|x 1520-4804
856 4 _ |u https://juser.fz-juelich.de/record/820516/files/acs.jmedchem.5b01684.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820516/files/acs.jmedchem.5b01684.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820516/files/acs.jmedchem.5b01684.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820516/files/acs.jmedchem.5b01684.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820516/files/acs.jmedchem.5b01684.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820516/files/acs.jmedchem.5b01684.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820516
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167585
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MED CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MED CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21