000820545 001__ 820545
000820545 005__ 20240712113114.0
000820545 0247_ $$2doi$$a10.1016/j.solidstatesciences.2016.08.011
000820545 0247_ $$2ISSN$$a1293-2558
000820545 0247_ $$2ISSN$$a1873-3085
000820545 0247_ $$2WOS$$aWOS:000384779800014
000820545 037__ $$aFZJ-2016-05827
000820545 082__ $$a550
000820545 1001_ $$0P:(DE-HGF)0$$aRedhammer, G. J.$$b0$$eCorresponding author
000820545 245__ $$aA single crystal X-ray and powder neutron diffraction study on NASICON-type Li$_{1+x}$Al$_{x}$Ti$_{2−x}$(PO$_{4}$)$_{3}$ (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity
000820545 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000820545 3367_ $$2DRIVER$$aarticle
000820545 3367_ $$2DataCite$$aOutput Types/Journal article
000820545 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478513914_10743
000820545 3367_ $$2BibTeX$$aARTICLE
000820545 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820545 3367_ $$00$$2EndNote$$aJournal Article
000820545 520__ $$aSingle crystals of NASICON-type material Li1+xTi2−xAlx(PO4)3 (LATP) with 0 ≤ x ≤ 0.5 were successfully grown using long-term sintering techniques. Sample material was studied by chemical analysis, single crystal X-ray and neutron diffraction. The Ti4+ replacement scales very well with the Al3+ and Li+ incorporation. The additional Li+ thereby enters the M3 cavity of the NASICON framework at x, y, z ∼ (0.07, 0.34, 0.09) and is regarded to be responsible for the enhanced Li+ conduction of LATP as compared to Al-free LTP. Variations in structural parameters, associated with the Ti4+ substitution with Al3+ + Li+ will be discussed in detail in this paper.
000820545 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000820545 588__ $$aDataset connected to CrossRef
000820545 7001_ $$00000-0002-2074-941X$$aRettenwander, D.$$b1
000820545 7001_ $$0P:(DE-Juel1)151260$$aPristat, S.$$b2$$ufzj
000820545 7001_ $$0P:(DE-Juel1)156509$$aDashjav, E.$$b3$$ufzj
000820545 7001_ $$0P:(DE-HGF)0$$aKumar, C. M. N.$$b4
000820545 7001_ $$0P:(DE-HGF)0$$aTopa, D.$$b5
000820545 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b6$$ufzj
000820545 773__ $$0PERI:(DE-600)2035101-X$$a10.1016/j.solidstatesciences.2016.08.011$$gVol. 60, p. 99 - 107$$p99 - 107$$tSolid state sciences$$v60$$x1293-2558$$y2016
000820545 8564_ $$uhttps://juser.fz-juelich.de/record/820545/files/1-s2.0-S1293255816301017-main.pdf$$yRestricted
000820545 8564_ $$uhttps://juser.fz-juelich.de/record/820545/files/1-s2.0-S1293255816301017-main.gif?subformat=icon$$xicon$$yRestricted
000820545 8564_ $$uhttps://juser.fz-juelich.de/record/820545/files/1-s2.0-S1293255816301017-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820545 8564_ $$uhttps://juser.fz-juelich.de/record/820545/files/1-s2.0-S1293255816301017-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820545 8564_ $$uhttps://juser.fz-juelich.de/record/820545/files/1-s2.0-S1293255816301017-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820545 8564_ $$uhttps://juser.fz-juelich.de/record/820545/files/1-s2.0-S1293255816301017-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820545 909CO $$ooai:juser.fz-juelich.de:820545$$pVDB
000820545 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151260$$aForschungszentrum Jülich$$b2$$kFZJ
000820545 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b3$$kFZJ
000820545 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000820545 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a JCNS-SNS$$b4
000820545 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b6$$kFZJ
000820545 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000820545 9141_ $$y2016
000820545 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820545 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820545 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE SCI : 2015
000820545 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820545 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820545 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820545 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820545 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820545 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820545 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820545 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820545 920__ $$lyes
000820545 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000820545 9201_ $$0I:(DE-Juel1)JCNS-SNS-20110128$$kJCNS-SNS$$lJCNS-SNS$$x1
000820545 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x2
000820545 980__ $$ajournal
000820545 980__ $$aVDB
000820545 980__ $$aUNRESTRICTED
000820545 980__ $$aI:(DE-Juel1)IEK-1-20101013
000820545 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000820545 980__ $$aI:(DE-Juel1)IEK-12-20141217
000820545 981__ $$aI:(DE-Juel1)IMD-4-20141217
000820545 981__ $$aI:(DE-Juel1)IMD-2-20101013
000820545 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000820545 981__ $$aI:(DE-Juel1)IEK-12-20141217