000820572 001__ 820572
000820572 005__ 20220930130108.0
000820572 0247_ $$2doi$$a10.1186/s13628-016-0032-3
000820572 0247_ $$2Handle$$a2128/12682
000820572 0247_ $$2WOS$$aWOS:000388036600001
000820572 037__ $$aFZJ-2016-05846
000820572 082__ $$a570
000820572 1001_ $$0P:(DE-Juel1)140184$$aSill, Clemens$$b0
000820572 245__ $$aStructure and domain dynamics of human lactoferrin in solution and the influence of Fe(III)-ion ligand binding
000820572 260__ $$aLondon$$bBioMed Central$$c2016
000820572 3367_ $$2DRIVER$$aarticle
000820572 3367_ $$2DataCite$$aOutput Types/Journal article
000820572 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484916656_27106
000820572 3367_ $$2BibTeX$$aARTICLE
000820572 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820572 3367_ $$00$$2EndNote$$aJournal Article
000820572 520__ $$aBackgroundHuman lactoferrin is an iron-binding protein of the innate immune system consisting of two connected lobes, each with a binding site located in a cleft. The clefts in each lobe undergo a hinge movement from open to close when Fe3+ is present in the solution and can be bound. The binding mechanism was assumed to relate on thermal domain fluctuations of the cleft domains prior to binding. We used Small Angle Neutron Scattering and Neutron Spin Echo Spectroscopy to determine the lactoferrin structure and domain dynamics in solution.ResultsWhen Fe3+ is present in solution interparticle interactions change from repulsive to attractive in conjunction with emerging metas aggregates, which are not observed without Fe3+. The protein form factor shows the expected change due to lobe closing if Fe3+ is present. The dominating motions of internal domain dynamics with relaxation times in the 30–50 ns range show strong bending and stretching modes with a steric suppressed torsion, but are almost independent of the cleft conformation. Thermally driven cleft closing motions of relevant amplitude are not observed if the cleft is open.ConclusionThe Fe3+ binding mechanism is not related to thermal equilibrium fluctuations closing the cleft. A likely explanation may be that upon entering the cleft the iron ion first binds weakly which destabilizes and softens the hinge region and enables large fluctuations that then close the cleft resulting in the final formation of the stable iron binding site and, at the same time, stable closed conformation.
000820572 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000820572 588__ $$aDataset connected to CrossRef
000820572 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000820572 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000820572 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000820572 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000820572 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000820572 7001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b1$$eCorresponding author
000820572 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b2
000820572 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b3
000820572 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b4
000820572 7001_ $$0P:(DE-HGF)0$$aFarago, Bela$$b5
000820572 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b6
000820572 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b7
000820572 773__ $$0PERI:(DE-600)2600208-5$$a10.1186/s13628-016-0032-3$$gVol. 9, no. 1, p. 7$$n1$$p7$$tBMC Biophysics$$v9$$x2046-1682$$y2016
000820572 8564_ $$uhttps://juser.fz-juelich.de/record/820572/files/art_10.1186_s13628-016-0032-3.pdf$$yOpenAccess
000820572 8564_ $$uhttps://juser.fz-juelich.de/record/820572/files/art_10.1186_s13628-016-0032-3.gif?subformat=icon$$xicon$$yOpenAccess
000820572 8564_ $$uhttps://juser.fz-juelich.de/record/820572/files/art_10.1186_s13628-016-0032-3.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820572 8564_ $$uhttps://juser.fz-juelich.de/record/820572/files/art_10.1186_s13628-016-0032-3.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820572 8564_ $$uhttps://juser.fz-juelich.de/record/820572/files/art_10.1186_s13628-016-0032-3.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820572 8564_ $$uhttps://juser.fz-juelich.de/record/820572/files/art_10.1186_s13628-016-0032-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820572 8767_ $$92017-01-23$$d2017-01-23$$eAPC$$jDeposit$$lDeposit: BMC$$zKeine Rechnung da Deposit
000820572 909CO $$ooai:juser.fz-juelich.de:820572$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000820572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b1$$kFZJ
000820572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b2$$kFZJ
000820572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b3$$kFZJ
000820572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b4$$kFZJ
000820572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b6$$kFZJ
000820572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b7$$kFZJ
000820572 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000820572 9141_ $$y2016
000820572 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820572 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820572 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000820572 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820572 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC BIOPHYS : 2015
000820572 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000820572 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000820572 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820572 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820572 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820572 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820572 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820572 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820572 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820572 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820572 920__ $$lyes
000820572 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000820572 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000820572 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x2
000820572 9801_ $$aFullTexts
000820572 980__ $$ajournal
000820572 980__ $$aVDB
000820572 980__ $$aI:(DE-Juel1)ICS-7-20110106
000820572 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000820572 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000820572 980__ $$aUNRESTRICTED
000820572 980__ $$aAPC
000820572 981__ $$aI:(DE-Juel1)IBI-2-20200312
000820572 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000820572 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218