001     820578
005     20210129224522.0
024 7 _ |a 10.12751/nncn.bc2016.0059
|2 doi
024 7 _ |a 2128/12715
|2 Handle
037 _ _ |a FZJ-2016-05852
041 _ _ |a eng
100 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 0
|e Corresponding author
|u fzj
111 2 _ |a HBP Summit 2016
|c Florence
|d 2016-10-12 - 2016-10-14
|w Italy
245 _ _ |a Multiscale approach to explore the relationships between connectivity and function in whole brain simulations
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1586172894_15239
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a To better understand the relationship between connectivity and function in the brain at different scales, in this work we show the results of using point-neuron network simulations to complement connectivity information from whole brain simulations based on a dynamic neuron mass model. In our multiscale approach, we simulate a whole brain parcellated into 68 regions where each region is modeled as a dynamic neuron mass, and in parallel, we also model each region as small 200 point-neuron populations in NEST. Structural plasticity in NEST is then used to calculate inner connectivity of each region with the aid of an interactive tool designed for visualizing and steering the algorithm. Using this approach, the fitting and parameter space exploration times are reduced and a new way to explore the impact of connectivity in function at different scales is presented.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 2
536 _ _ |a W2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)
|0 G:(DE-HGF)B1175.01.12
|c B1175.01.12
|x 3
536 _ _ |a Virtual Connectomics - Deutschland - USA Zusammenarbeit in Computational Science: Mechanistische Zusammenhänge zwischen Struktur und funktioneller Dynamik im menschlichen Gehirn (BMBF-01GQ1504B)
|0 G:(DE-Juel1)BMBF-01GQ1504B
|c BMBF-01GQ1504B
|x 4
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 5
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Nowke, Christian
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Peyser, Alexander
|0 P:(DE-Juel1)161525
|b 2
|u fzj
700 1 _ |a Weyers, Benjamin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hentschel, Bernd
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 5
|u fzj
700 1 _ |a Kuhlen, Torsten W.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.12751/nncn.bc2016.0059
856 4 _ |u https://juser.fz-juelich.de/record/820578/files/HBP2016.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820578/files/HBP2016.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820578/files/HBP2016.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820578/files/HBP2016.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820578/files/HBP2016.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820578/files/HBP2016.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:820578
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161525
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)151166
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21