Hauptseite > Publikationsdatenbank > Multiscale approach to explore the relationships between connectivity and function in whole brain simulations > print |
001 | 820578 | ||
005 | 20210129224522.0 | ||
024 | 7 | _ | |a 10.12751/nncn.bc2016.0059 |2 doi |
024 | 7 | _ | |a 2128/12715 |2 Handle |
037 | _ | _ | |a FZJ-2016-05852 |
041 | _ | _ | |a eng |
100 | 1 | _ | |a Diaz, Sandra |0 P:(DE-Juel1)165859 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a HBP Summit 2016 |c Florence |d 2016-10-12 - 2016-10-14 |w Italy |
245 | _ | _ | |a Multiscale approach to explore the relationships between connectivity and function in whole brain simulations |
260 | _ | _ | |c 2016 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1586172894_15239 |2 PUB:(DE-HGF) |x Other |
520 | _ | _ | |a To better understand the relationship between connectivity and function in the brain at different scales, in this work we show the results of using point-neuron network simulations to complement connectivity information from whole brain simulations based on a dynamic neuron mass model. In our multiscale approach, we simulate a whole brain parcellated into 68 regions where each region is modeled as a dynamic neuron mass, and in parallel, we also model each region as small 200 point-neuron populations in NEST. Structural plasticity in NEST is then used to calculate inner connectivity of each region with the aid of an interactive tool designed for visualizing and steering the algorithm. Using this approach, the fitting and parameter space exploration times are reduced and a new way to explore the impact of connectivity in function at different scales is presented. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 1 |
536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 2 |
536 | _ | _ | |a W2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12) |0 G:(DE-HGF)B1175.01.12 |c B1175.01.12 |x 3 |
536 | _ | _ | |a Virtual Connectomics - Deutschland - USA Zusammenarbeit in Computational Science: Mechanistische Zusammenhänge zwischen Struktur und funktioneller Dynamik im menschlichen Gehirn (BMBF-01GQ1504B) |0 G:(DE-Juel1)BMBF-01GQ1504B |c BMBF-01GQ1504B |x 4 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 5 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Nowke, Christian |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Peyser, Alexander |0 P:(DE-Juel1)161525 |b 2 |u fzj |
700 | 1 | _ | |a Weyers, Benjamin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Hentschel, Bernd |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Morrison, Abigail |0 P:(DE-Juel1)151166 |b 5 |u fzj |
700 | 1 | _ | |a Kuhlen, Torsten W. |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.12751/nncn.bc2016.0059 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820578/files/HBP2016.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820578/files/HBP2016.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820578/files/HBP2016.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820578/files/HBP2016.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820578/files/HBP2016.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820578/files/HBP2016.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:820578 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165859 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)161525 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)151166 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|