000820610 001__ 820610
000820610 005__ 20230310131350.0
000820610 0247_ $$2doi$$a10.1137/16M1060078
000820610 0247_ $$2ISSN$$a0196-5204
000820610 0247_ $$2ISSN$$a1064-8275
000820610 0247_ $$2ISSN$$a1095-7197
000820610 0247_ $$2WOS$$aWOS:000385283400026
000820610 0247_ $$2altmetric$$aaltmetric:5095148
000820610 037__ $$aFZJ-2016-05882
000820610 082__ $$a004
000820610 1001_ $$0P:(DE-HGF)0$$aRuprecht, Daniel$$b0$$eCorresponding author
000820610 245__ $$aSpectral Deferred Corrections with Fast-wave Slow-wave Splitting
000820610 260__ $$aPhiladelphia, Pa.$$bSIAM$$c2016
000820610 3367_ $$2DRIVER$$aarticle
000820610 3367_ $$2DataCite$$aOutput Types/Journal article
000820610 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478618111_18228
000820610 3367_ $$2BibTeX$$aARTICLE
000820610 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820610 3367_ $$00$$2EndNote$$aJournal Article
000820610 520__ $$aThe paper investigates a variant of semi-implicit spectral deferred corrections (SISDC) in which the stiff, fast dynamics correspond to fast propagating waves (``fast-wave slow-wave problem''). We show that for a scalar test problem with two imaginary eigenvalues $i \lambda_{\text{f}}$, $i \lambda_{\text{s}}$, having $\Delta t ( | \lambda_{\text{f}} | + | \lambda_{\text{s}} | ) < 1$ is sufficient for the fast-wave slow-wave SDC (fwsw-SDC) iteration to converge and that in the limit of infinitely fast waves the convergence rate of the nonsplit version is retained. Stability function and discrete dispersion relation are derived and show that the method is stable for essentially arbitrary fast-wave CFL numbers as long as the slow dynamics are resolved. The method causes little numerical diffusion and its semidiscrete phase speed is accurate also for large wave number modes. Performance is studied for an acoustic-advection problem and for the linearised Boussinesq equations, describing compressible, stratified flow. fwsw-SDC is compared to diagonally implicit Runge-Kutta (DIRK) and implicit-explicit (IMEX) Runge-Kutta methods and found to be competitive in terms of both accuracy and cost.
000820610 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000820610 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
000820610 588__ $$aDataset connected to CrossRef
000820610 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b1$$ufzj
000820610 773__ $$0PERI:(DE-600)1468391-x$$a10.1137/16M1060078$$gVol. 38, no. 4, p. A2535 - A2557$$n4$$pA2535 - A2557$$tSIAM journal on scientific computing$$v38$$x0196-5204$$y2016
000820610 909CO $$ooai:juser.fz-juelich.de:820610$$pVDB
000820610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b1$$kFZJ
000820610 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000820610 9141_ $$y2016
000820610 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820610 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820610 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSIAM J SCI COMPUT : 2015
000820610 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820610 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820610 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820610 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820610 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820610 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820610 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820610 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820610 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820610 920__ $$lyes
000820610 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000820610 980__ $$ajournal
000820610 980__ $$aVDB
000820610 980__ $$aUNRESTRICTED
000820610 980__ $$aI:(DE-Juel1)JSC-20090406