001     820610
005     20230310131350.0
024 7 _ |a 10.1137/16M1060078
|2 doi
024 7 _ |a 0196-5204
|2 ISSN
024 7 _ |a 1064-8275
|2 ISSN
024 7 _ |a 1095-7197
|2 ISSN
024 7 _ |a WOS:000385283400026
|2 WOS
024 7 _ |a altmetric:5095148
|2 altmetric
037 _ _ |a FZJ-2016-05882
082 _ _ |a 004
100 1 _ |a Ruprecht, Daniel
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Spectral Deferred Corrections with Fast-wave Slow-wave Splitting
260 _ _ |a Philadelphia, Pa.
|c 2016
|b SIAM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1478618111_18228
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The paper investigates a variant of semi-implicit spectral deferred corrections (SISDC) in which the stiff, fast dynamics correspond to fast propagating waves (``fast-wave slow-wave problem''). We show that for a scalar test problem with two imaginary eigenvalues $i \lambda_{\text{f}}$, $i \lambda_{\text{s}}$, having $\Delta t ( | \lambda_{\text{f}} | + | \lambda_{\text{s}} | ) < 1$ is sufficient for the fast-wave slow-wave SDC (fwsw-SDC) iteration to converge and that in the limit of infinitely fast waves the convergence rate of the nonsplit version is retained. Stability function and discrete dispersion relation are derived and show that the method is stable for essentially arbitrary fast-wave CFL numbers as long as the slow dynamics are resolved. The method causes little numerical diffusion and its semidiscrete phase speed is accurate also for large wave number modes. Performance is studied for an acoustic-advection problem and for the linearised Boussinesq equations, describing compressible, stratified flow. fwsw-SDC is compared to diagonally implicit Runge-Kutta (DIRK) and implicit-explicit (IMEX) Runge-Kutta methods and found to be competitive in terms of both accuracy and cost.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)
|0 G:(GEPRIS)450829162
|c 450829162
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Speck, Robert
|0 P:(DE-Juel1)132268
|b 1
|u fzj
773 _ _ |a 10.1137/16M1060078
|g Vol. 38, no. 4, p. A2535 - A2557
|0 PERI:(DE-600)1468391-x
|n 4
|p A2535 - A2557
|t SIAM journal on scientific computing
|v 38
|y 2016
|x 0196-5204
909 C O |o oai:juser.fz-juelich.de:820610
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132268
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SIAM J SCI COMPUT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21