Contribution to a book FZJ-2016-05885

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Automated Performance Modeling of the UG4 Simulation Framework

 ;  ;  ;  ;  ;  ;

2016
Springer International Publishing Cham, Switzerland
ISBN: 978-3-319-40526-1, 978-3-319-40528-5 (electronic)

Software for Exascale Computing - SPPEXA 2013-2015 / Bungartz, Hans-Joachim (Editor) ; Chapter 21 ; ISBN: 978-3-319-40526-1=978-3-319-40528-5 Cham, Switzerland : Springer International Publishing, Lecture Notes in Computational Science and Engineering 113, 467 - 481 () [10.1007/978-3-319-40528-5_21]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Many scientific research questions such as the drug diffusion through the upper part of the human skin are formulated in terms of partial differential equations and their solution is numerically addressed using grid based finite element methods. For detailed and more realistic physical models this computational task becomes challenging and thus complex numerical codes with good scaling properties up to millions of computing cores are required. Employing empirical tests we presented very good scaling properties for the geometric multigrid solver in Reiter et al. (Comput Vis Sci 16(4):151–164, 2013) using the UG4 framework that is used to address such problems. In order to further validate the scalability of the code we applied automated performance modeling to UG4 simulations and presented how performance bottlenecks can be detected and resolved in Vogel et al. (10,000 performance models per minute—scalability of the UG4 simulation framework. In: Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: Parallel processing, theoretical computer science and general issues, vol 9233. Springer, Springer, Heidelberg, pp 519–531, 2015). In this paper we provide an overview on the obtained results, present a more detailed analysis via performance models for the components of the geometric multigrid solver and comment on how the performance models coincide with our expectations.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. ATMLPP - ATML Parallel Performance (ATMLPP) (ATMLPP)

Appears in the scientific report 2016
Database coverage:
No Authors Fulltext
Click to display QR Code for this record

The record appears in these collections:
Document types > Books > Contribution to a book
Workflow collections > Public records
Institute Collections > JSC
Publications database

 Record created 2016-11-08, last modified 2025-03-14



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)