000820614 001__ 820614 000820614 005__ 20250314084115.0 000820614 020__ $$a978-3-319-40526-1 000820614 020__ $$a978-3-319-40528-5 (electronic) 000820614 0247_ $$2doi$$a10.1007/978-3-319-40528-5_20 000820614 0247_ $$2WOS$$aWOS:000411331500020 000820614 037__ $$aFZJ-2016-05886 000820614 041__ $$aEnglish 000820614 1001_ $$0P:(DE-HGF)0$$aWolf, Felix$$b0 000820614 245__ $$aAutomatic Performance Modeling of HPC Applications 000820614 260__ $$aCham, Switzerland$$bSpringer International Publishing$$c2016 000820614 29510 $$aSoftware for Exascale Computing - SPPEXA 2013-2015 / Bungartz, Hans-Joachim (Editor) ; Chapter 20 ; ISBN: 978-3-319-40526-1=978-3-319-40528-5 000820614 300__ $$a445 - 465 000820614 3367_ $$2ORCID$$aBOOK_CHAPTER 000820614 3367_ $$07$$2EndNote$$aBook Section 000820614 3367_ $$2DRIVER$$abookPart 000820614 3367_ $$2BibTeX$$aINBOOK 000820614 3367_ $$2DataCite$$aOutput Types/Book chapter 000820614 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1478618491_18230 000820614 4900_ $$aLecture Notes in Computational Science and Engineering$$v113 000820614 520__ $$aMany existing applications suffer from inherent scalability limitations that will prevent them from running at exascale. Current tuning practices, which rely on diagnostic experiments, have drawbacks because (i) they detect scalability problems relatively late in the development process when major effort has already been invested into an inadequate solution and (ii) they incur the extra cost of potentially numerous full-scale experiments. Analytical performance models, in contrast, allow application developers to address performance issues already during the design or prototyping phase. Unfortunately, the difficulties of creating such models combined with the lack of appropriate tool support still render performance modeling an esoteric discipline mastered only by a relatively small community of experts. This article summarizes the results of the Catwalk project, which aimed to create tools that automate key activities of the performance modeling process, making this powerful methodology accessible to a wider audience of HPC application developers. 000820614 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000820614 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x1 000820614 588__ $$aDataset connected to CrossRef Book Series 000820614 7001_ $$0P:(DE-HGF)0$$aBischof, Christian$$b1 000820614 7001_ $$0P:(DE-HGF)0$$aCalotoiu, Alexandru$$b2$$eCorresponding author 000820614 7001_ $$0P:(DE-HGF)0$$aHoefler, Torsten$$b3 000820614 7001_ $$0P:(DE-HGF)0$$aIwainsky, Christian$$b4 000820614 7001_ $$0P:(DE-HGF)0$$aKwasniewski, Grzegorz$$b5 000820614 7001_ $$0P:(DE-Juel1)132199$$aMohr, Bernd$$b6$$ufzj 000820614 7001_ $$0P:(DE-HGF)0$$aShudler, Sergei$$b7 000820614 7001_ $$0P:(DE-Juel1)140202$$aStrube, Alexandre$$b8$$ufzj 000820614 7001_ $$0P:(DE-HGF)0$$aVogel, Andreas$$b9 000820614 7001_ $$0P:(DE-HGF)0$$aWittum, Gabriel$$b10 000820614 773__ $$a10.1007/978-3-319-40528-5_20 000820614 909CO $$ooai:juser.fz-juelich.de:820614$$pVDB 000820614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132199$$aForschungszentrum Jülich$$b6$$kFZJ 000820614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140202$$aForschungszentrum Jülich$$b8$$kFZJ 000820614 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000820614 9141_ $$y2016 000820614 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000820614 920__ $$lno 000820614 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000820614 980__ $$acontb 000820614 980__ $$aVDB 000820614 980__ $$aUNRESTRICTED 000820614 980__ $$aI:(DE-Juel1)JSC-20090406