001     820614
005     20250314084115.0
020 _ _ |a 978-3-319-40526-1
020 _ _ |a 978-3-319-40528-5 (electronic)
024 7 _ |a 10.1007/978-3-319-40528-5_20
|2 doi
024 7 _ |a WOS:000411331500020
|2 WOS
037 _ _ |a FZJ-2016-05886
041 _ _ |a English
100 1 _ |a Wolf, Felix
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Automatic Performance Modeling of HPC Applications
260 _ _ |a Cham, Switzerland
|c 2016
|b Springer International Publishing
295 1 0 |a Software for Exascale Computing - SPPEXA 2013-2015 / Bungartz, Hans-Joachim (Editor) ; Chapter 20 ; ISBN: 978-3-319-40526-1=978-3-319-40528-5
300 _ _ |a 445 - 465
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1478618491_18230
|2 PUB:(DE-HGF)
490 0 _ |a Lecture Notes in Computational Science and Engineering
|v 113
520 _ _ |a Many existing applications suffer from inherent scalability limitations that will prevent them from running at exascale. Current tuning practices, which rely on diagnostic experiments, have drawbacks because (i) they detect scalability problems relatively late in the development process when major effort has already been invested into an inadequate solution and (ii) they incur the extra cost of potentially numerous full-scale experiments. Analytical performance models, in contrast, allow application developers to address performance issues already during the design or prototyping phase. Unfortunately, the difficulties of creating such models combined with the lack of appropriate tool support still render performance modeling an esoteric discipline mastered only by a relatively small community of experts. This article summarizes the results of the Catwalk project, which aimed to create tools that automate key activities of the performance modeling process, making this powerful methodology accessible to a wider audience of HPC application developers.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Bischof, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Calotoiu, Alexandru
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Hoefler, Torsten
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Iwainsky, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kwasniewski, Grzegorz
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mohr, Bernd
|0 P:(DE-Juel1)132199
|b 6
|u fzj
700 1 _ |a Shudler, Sergei
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Strube, Alexandre
|0 P:(DE-Juel1)140202
|b 8
|u fzj
700 1 _ |a Vogel, Andreas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wittum, Gabriel
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1007/978-3-319-40528-5_20
909 C O |o oai:juser.fz-juelich.de:820614
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)140202
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21