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Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics 
computations. Because of their long-range nature, they lead to large finite-size effects over which it 
is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to 
describe these effects. Here we argue that some care has to be taken when applying these methods to 
quantum electrodynamics in a finite volume.
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State-of-the-art lattice quantum chromodynamics (QCD) com-

putations have reached such a high level of accuracy (see e.g. [1]
and references therein) that small electromagnetic corrections, and 
other isospin breaking effects, are becoming important. These ef-
fects will have to be accounted for more and more systematically 
if the results of lattice calculations are to continue to be used 
to test the standard model and to search for new physics in in-
creasingly precise experiments. Moreover, electromagnetic effects 
in hadrons are important in themselves. For instance, they are crit-
ical for understanding Big Bang nucleosynthesis as well as many 
properties of atomic nuclei or for determining the up and down 
quark masses. As a result, increasing attention is being focused
on including quantum electrodynamics (QED) corrections in lat-
tice QCD calculations. A number of results concerning hadron and 
quark masses have been obtained, in the electroquenched approx-
imation [2–8] and in full QCD+QED [9–13]. In addition, a method 
for including QED corrections in the lattice calculation of hadronic 
matrix elements has been proposed in [14].
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A very important issue in such calculations is finite-volume ef-
fects.2 Indeed, the vanishing mass of the photon implies that the 
leading finite-volume corrections are proportional to inverse pow-

ers of the spatial dimension, L, of the lattice, instead of being 
exponentially suppressed, as they are in pure QCD calculations. 
These power corrections represent a large fraction – tens of per-
cent – of the computed electromagnetic effects for typical lattice 
sizes L ∼ 3 fm, as shown in [5,11,15], where controlled infinite-
volume extrapolations were performed. These corrections must be 
appropriately subtracted to obtain accurate infinite-volume results. 
Thus, it is important to know their precise analytical form and to 
constrain them as much as possible.3

2 Throughout this paper we will be concerned with situations in which the linear 
dimensions of the lattice are much larger than the Compton wavelengths and the 
internal-structure length-scales of the particles under consideration.
3 The two leading finite-volume corrections, proportional to 1/L and 1/L2 , are 

given in terms only of the particle’s charge and infinite-volume mass [11,16]. This 
important feature allows precise infinite-volume extrapolations of the QED contri-
butions to particle masses in lattice calculations. In particular, the finite-volume cor-
rections do not depend on spin nor on particle structure [11,16]. As shown in [11], 
this universality follows, under very general hypotheses, from QED Ward–Takahashi 
identities and the work of Lüscher on the analyticity properties of propagators and 
vertex functions [17].
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Fig. 1. NREFT self-energy diagrams which contribute to finite-volume effects on the mass of a spin-1/2 particle, up to order 1/L3 . Their contributions were taken into account 
in [16]. The solid line corresponds to the fermion propagator; the dashed line to the temporal photon propagator; the wavy line to the transverse photon propagator; the 
cross to a kinetic term insertion; the simple vertices with these lines, to the fermion-temporal-photon interaction; to the fermion-transverse-photon interaction; to the 
fermion-to-two-transverse-photons interaction; the square vertex to the Fermi interaction; the crossed vertex to the Darwin interaction; the dot vertex to the spin-orbit 
interaction. Under each diagram we indicate its contribution to the finite-volume correction on the fermion mass. Calculations are performed in Coulomb gauge. An explicit 
factor of 2 appears in the single Fermi, Darwin and spin-orbit vertex terms. This indicates that to each of the three diagrams shown corresponds one in which the vertices 
are switched. These new diagrams give the same contributions as the original diagrams. The sum of all the contributions shown in the figure yields the result in Eq. (2).

An elegant and efficient method to determine the functional 
form of these effects was proposed and worked out in [16]. It is 
based on nonrelativistic effective field theories (NREFTs) and allows 
to compute these corrections in a systematic expansion in powers 
of 1/L for any spin-0 or 1/2 massive particles with (or without) 
internal structure, such as hadrons or nuclei. In this approach, the 
corrections are determined by the mass and by well-defined elec-
tromagnetic properties of the particle, such as its charge, charge 
radius, magnetic moment, etc. However, as pointed out in [11] and 
explained in more detail below, the results obtained in [16] do 
not fully agree with those of relativistic point–particle calculations 
performed in [11]. Since many checks of the relativistic calcula-
tion were performed in [11] and both results cannot be correct, 
we have decided to investigate the possible source of the discrep-
ancy. As explained below, this investigation has led us to uncover a 
subtlety in the application of NREFTs to finite-volume QED, which 
goes beyond the particular calculation discussed in the present pa-
per.4

To expose the problem and its solution, we focus on the calcu-
lation of the finite-volume corrections to the pole mass of spin-1/2
particles at O (α). As in [11,16], we work with periodic boundary 
conditions in the QEDL formulation of QED in a finite volume.5 In 
this formulation, momentum modes of the photon field with �k = �0, 
for all values of k0 , are eliminated from the theory. This approach 
was first proposed in [20] and, as shown in [11], has many theoret-
ical and practical advantages. Here we work with an infinite time 
direction, as it simplifies analytical calculations and is equivalent 
to the finite time extent, T , formulation with periodic boundary 
conditions, up to corrections which are smaller than any inverse 
power in T [11].

Finite-volume, electromagnetic corrections to the mass of a par-
ticle can be obtained from the difference of its on-shell, electro-
magnetic self-energy at rest, in finite and infinite volumes. Phys-
ically, the corrections in inverse powers of L arise mainly from 
the particle under consideration exchanging a photon with itself 
around the periodic three-volume. In [16], Davoudi and Savage 
(DS) compute this effect for a generic spin-1/2 particle using 
NREFT to N3LO, i.e. to order 1/L4 . The use of NREFT is entirely jus-

4 It is important to note that this subtlety does not affect the two leading, univer-
sal, finite-volume corrections mentioned above, as it only enters at order 1/L3 , as 
shown below.
5 Very recently, alternative formulations of QED in finite volume have been pro-

posed in [18,19].

tified here, because we are after an asymptotic expansion of parti-
cle properties in inverse powers of L. NREFT is a low-momentum 
effective theory of QED and in QEDL , it provides expansions of 
low-momentum particle properties in powers of the infrared mo-

mentum cutoff, 2π/L.

To understand the NREFT approach, we have repeated DS’s cal-
culation. We stop at N2LO, i.e. up to and including terms propor-
tional to 1/L3 , because this is the order at which the subtlety, 
described below, first arises. We use the same NREFT lagrangian 
as they do, namely [21–28]:

Lψ = ψ†

[
iD0 +

| �D|2

2m
+ cF

e

2m
�σ .�B + cD

e

8m2
�∇ · �E

+ icS
e

8m2
�σ · ( �D × �E − �E × �D) + O (�p4)

]
ψ , (1)

where ψ is a two-component spinor which annihilates a particle, 
Dµ = ∂µ + ieQ Aµ , cF = Q + κ + O (α), cD = Q + 4m2〈r2〉/3 +
O (α), eQ is the charge of the particle, m its infinite-volume mass, 
〈r2〉 its mean-squared charge radius and κ its anomalous magnetic 
moment. The diagrams which contribute up to N2LO are shown in 
Fig. 1. They yield the following finite-volume corrections:

�DSm(L) ≡m(L) −m ∼
L→+∞

αQ 2 C1

2L

[
1+

2

mL

]

+
πα

m2L3

[
c2F +

1

2
cD Q

]
, (2)

where m(L) is the value of the particle’s mass in QEDL and C1 =
−2.837297(1) [11,29–31] is a known constant. This result fully 
agrees with DS’s.

However, as noted above and in [11], if we reduce the correc-
tions of Eq. (2) to the point particle case by setting 〈r2〉 = 0 and 
κ = 0, we find that it disagrees with the one that we computed 
directly in relativistic spinor QED. Indeed, in the reduced correc-
tions, the term proportional to (παQ 2/m2L3) has a coefficient of 
3/2 instead of 3, as found in [11] for the relativistic case. More-

over, in [11] we performed a precise, dedicated numerical study of 
finite-volume effects on the pole mass of a point-like fermion in 
relativistic QEDL . The study was conducted with fixed bare param-

eters and six lattice sizes ranging from L/a = 24 to L/a = 128, with 
a the lattice spacing. A fit of the measured, finite-volume mass, 
to a polynomial in a/L, highly favored our value for the 1/L3 co-

efficient over the one in [16]. To explain where this discrepancy 
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comes from, we now describe the main features of our relativistic 
calculation [11].

The computation in spinor QED is a straightforward asymp-

totic expansion in large L, of the difference between the finite and 
infinite-volume, on-shell self-energies of the particle [11]. As men-

tioned above, we consider this difference at O (α), i.e. we consider 
the usual, one-loop sunset diagram in which a photon is emitted 
and re-absorbed by the particle. The asymptotic expansion is most 
straightforwardly performed using a Poisson summation formula. 
In that approach, the corrections in powers of 1/L result from the 
nonanalyticities in the integrand/summand, associated with inter-
mediate states going on shell in the domain of integration. The 
obvious singularities that arise in the present case are the particle 
and the positive and negative energy photon poles. The antiparticle 
pole, which is 2m away in energy, is only expected to contribute 
terms which fall off exponentially with 2mL. This is an illustration 
of the decoupling of antiparticle modes that leads to the NREFT for 
a single, massive particle, used in [16].

Upon closer inspection, however, we find that this expecta-
tion is incorrect. Analyzing the different contributions shows that 
the antiparticle pole contributes to the contentious term of order 
1/(m2L3), even though its propagator cannot go on shell for the 
given kinematics. This surprising result is due to the fact that the 
contribution of the zero modes of the photon is omitted from the 
loop sum. At order 1/L3 , the finite-volume corrections come not 
only from singularities of the summand/integrand in the domain 
of integration, but also from the explicit subtraction of the photon 
zero modes. Since these modes couple particles to antiparticles, 
the latter also play a role in the calculation of finite-volume ef-
fects.

In the language of NREFT, we reach the same conclusions if we 
explicitly include antiparticle degrees of freedom, in addition to 
the usual contributions of antiparticles to higher-dimension parti-
cle operators. Thus, to the lagrangian density, Lψ , for particle fields 
given in Eq. (1) and used in [16], we add the one for antiparticle 
fields, χ , and include direct couplings of particles to antiparticles. 
Then, the lagrangian density becomes:

LN2LO = Lψ +Lχ +L4 f + O (�p4) , (3)

where χ is a two-component spinor which annihilates antiparti-
cles. In Eq. (3), Lχ is obtained from Lψ with the replacements 
ψ → χ and Q → −Q . The relevant four-fermion interaction, 
at O (α), originates from particle–antiparticle annihilation in the 
triplet channel and is given by [32]

L4 f = dV
α

m2
(ψ† �σσ2χ

∗) · (χ Tσ2 �σψ) + O (α2, �p4) , (4)

where the σi , i = 1, 2, 3, are the Pauli matrices. For point particles, 
dV = −π Q 2 + O (α) [21,33].

From this four-fermion lagrangian, it is straightforward to com-

pute the contribution of the antiparticle to the finite-volume ef-
fects in the particle’s mass. It is given by the self-energy diagram 
of Fig. 2. We find this contribution to be

�4 fm(L) = dV
3α

2m2L3

∑̂

�q �=�0

1 , (5)

where �q is the momentum of the antiparticle in the loop and the 
sum, 

∑̂
�q �=�0 , represents the difference between the sum over the 

finite-volume modes and the infinite-volume integral, i.e.

1

L3

∑̂

�q �=�0

≡
1

L3

∑

�q �=�0

−

∫
d3q

(2π)3
. (6)

Fig. 2. Antiparticle contribution to the self-energy of a spin-1/2 particle which arises 
from the four-fermion lagrangian of Eq. (4). The double line corresponds to the an-
tiparticle propagator. The vertex corresponds to the vector four-fermion coupling. 
Under the diagram we indicate its contribution to the finite-volume corrections on 
the fermion mass. The diagram contributes at order 1/L3 and provides the term 
which is missing in the calculation of [16].

We now argue that it is correct to eliminate the �q = �0 modes from 
the finite-volume sum in Eq. (5), even though it is, initially, only 
photon zero modes which are removed. This is where the sub-
tlety enters in NREFT. If the �q = �0 antiparticle modes were present, 
as one might guess, then the finite-volume correction of Eq. (5)
would vanish and antiparticle degrees of freedom would not con-
tribute. However, one must remember where internal particle or 
antiparticle lines in NREFT come from. In relativistic QED, an in-
ternal particle or antiparticle line in a diagram, such as the self-
energy diagram under consideration, is produced at a vertex with 
a photon. But in QEDL that photon cannot have a vanishing three-
momentum. Therefore in such diagrams, where all external particle 
lines have vanishing three-momenta, the internal antiparticle lines 
cannot have vanishing three-momenta. This justifies the omission 
of the �q = �0 antiparticle modes in the contribution of Eq. (5).

Now 
∑̂

�q �=�0 1 = −1, so the full NREFT expression for the 
finite-volume correction to the mass m of a spin-1/2 particle of 
charge Q is, to O (1/L3) in the presence of electromagnetism,

�m(L) ∼
L→+∞

�DSm(L) − dV
3α

2m2L3
. (7)

Using the value of dV for a point particle given after Eq. (4), we 
find that this additional correction adds to the ones in �DSm(L)

exactly the (3παQ 2/2m2L3) term which is missing to reproduce 
the relativistic point–particle result of [11].

It is worth noting that the result of Eq. (7) can also be obtained 
by only reinstating the �q = �0 modes of the antiparticle field in 
the finite-volume NREFT. Then one uses the corresponding terms 
in the lagrangian to subtract these modes’ contribution from the 
finite-volume self-energy. In that approach, the 

∑̂
�q �=�0 1 that ap-

pears in Eq. (5) would directly be replaced by −1. One needs to 
consider neither the spatial modes of the antiparticle field in finite 
volume, nor any antiparticle modes in infinite volume.

To conclude, we have considered the calculation of finite-

volume corrections to the pole mass of a charged spin-1/2 par-

ticle, in the presence of electromagnetism. We have explained how 
the NREFT calculation of [16] can be reconciled with the rela-
tivistic QED result of [11]. In the process, we have shown that 
there are subtleties associated with applying NREFTs to the calcu-
lation of finite-volume effects in variants of finite-volume QED in 
which photon zero modes are eliminated. In particular, we have ar-
gued that antiparticle degrees of freedom must be dealt with care, 
because photon zero modes are treated differently in finite and 
infinite volumes. Indeed, those modes can couple antiparticles to 
particles. Therefore, NREFT calculations of particle properties must 
account for the contribution of antiparticles to the removal of the 
photon zero modes in finite volume. However, once this contribu-
tion is suitably accounted for, the NREFT approach constitutes an 
elegant and efficient formalism to calculate finite-volume correc-
tions.
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Note added

In the time between which this work appeared as a preprint on 
the arXiv and was submitted for publication, a preprint confirming 
our findings was released [34].
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