000820659 001__ 820659
000820659 005__ 20240712100904.0
000820659 0247_ $$2doi$$a10.5194/acp-16-10195-2016
000820659 0247_ $$2ISSN$$a1680-7316
000820659 0247_ $$2ISSN$$a1680-7324
000820659 0247_ $$2Handle$$a2128/12722
000820659 0247_ $$2WOS$$aWOS:000383177600007
000820659 0247_ $$2altmetric$$aaltmetric:10400712
000820659 037__ $$aFZJ-2016-05928
000820659 082__ $$a550
000820659 1001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b0$$eCorresponding author
000820659 245__ $$aSeasonal and inter-annual variability of lower stratospheric age of air spectra
000820659 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000820659 3367_ $$2DRIVER$$aarticle
000820659 3367_ $$2DataCite$$aOutput Types/Journal article
000820659 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478760854_18733
000820659 3367_ $$2BibTeX$$aARTICLE
000820659 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820659 3367_ $$00$$2EndNote$$aJournal Article
000820659 520__ $$aTrace gas transport in the lower stratosphere is investigated by analysing seasonal and inter-annual variations of the age of air spectrum – the probability distribution of stratospheric transit times. Age spectra are obtained using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim winds and total diabatic heating rates, and using a time-evolving boundary-impulse-response (BIER) method based on multiple tracer pulses. Seasonal age spectra show large deviations from an idealized stationary uni-modal shape. Multiple modes emerge in the spectrum throughout the stratosphere, strongest at high latitudes, caused by the interplay of seasonally varying tropical upward mass flux, stratospheric transport barriers and recirculation. Inter-annual variations in transport (e.g. quasi-biennial oscillation) cause significant modulations of the age spectrum shape. In fact, one particular QBO phase may determine the spectrum's mode during the following 2–3 years. Interpretation of the age spectrum in terms of transport contributions due to the residual circulation and mixing is generally not straightforward. It turns out that advection by the residual circulation represents the dominant pathway in the deep tropics and in the winter hemisphere extratropics above 500 K, controlling the modal age in these regions. In contrast, in the summer hemisphere, particularly in the lowermost stratosphere, mixing represents the most probable pathway controlling the modal age.
000820659 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000820659 588__ $$aDataset connected to CrossRef
000820659 7001_ $$0P:(DE-HGF)0$$aBirner, Thomas$$b1
000820659 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-10195-2016$$gVol. 16, no. 15, p. 10195 - 10213$$n15$$p10195 - 10213$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000820659 8564_ $$uhttps://juser.fz-juelich.de/record/820659/files/acp-16-10195-2016.pdf$$yOpenAccess
000820659 8564_ $$uhttps://juser.fz-juelich.de/record/820659/files/acp-16-10195-2016.gif?subformat=icon$$xicon$$yOpenAccess
000820659 8564_ $$uhttps://juser.fz-juelich.de/record/820659/files/acp-16-10195-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820659 8564_ $$uhttps://juser.fz-juelich.de/record/820659/files/acp-16-10195-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820659 8564_ $$uhttps://juser.fz-juelich.de/record/820659/files/acp-16-10195-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820659 8767_ $$92016-10-19$$d2016-10-19$$eAPC$$jZahlung erfolgt$$pacp-2016-135
000820659 909CO $$ooai:juser.fz-juelich.de:820659$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000820659 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b0$$kFZJ
000820659 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000820659 9141_ $$y2016
000820659 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000820659 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820659 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820659 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000820659 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000820659 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000820659 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820659 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820659 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820659 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820659 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000820659 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820659 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820659 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820659 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000820659 9801_ $$aFullTexts
000820659 980__ $$ajournal
000820659 980__ $$aVDB
000820659 980__ $$aUNRESTRICTED
000820659 980__ $$aI:(DE-Juel1)IEK-7-20101013
000820659 980__ $$aAPC
000820659 981__ $$aI:(DE-Juel1)ICE-4-20101013