000820660 001__ 820660
000820660 005__ 20240712100904.0
000820660 0247_ $$2doi$$a10.5194/acp-16-3463-2016
000820660 0247_ $$2ISSN$$a1680-7316
000820660 0247_ $$2ISSN$$a1680-7324
000820660 0247_ $$2Handle$$a2128/12723
000820660 0247_ $$2WOS$$aWOS:000374702000043
000820660 0247_ $$2altmetric$$aaltmetric:6198893
000820660 037__ $$aFZJ-2016-05929
000820660 082__ $$a550
000820660 1001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b0$$eCorresponding author$$ufzj
000820660 245__ $$aA microphysics guide to cirrus clouds – Part 1: Cirrus types
000820660 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000820660 3367_ $$2DRIVER$$aarticle
000820660 3367_ $$2DataCite$$aOutput Types/Journal article
000820660 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478760945_18736
000820660 3367_ $$2BibTeX$$aARTICLE
000820660 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820660 3367_ $$00$$2EndNote$$aJournal Article
000820660 520__ $$aThe microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations Nice.An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low- and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.
000820660 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000820660 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000820660 588__ $$aDataset connected to CrossRef
000820660 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b1$$ufzj
000820660 7001_ $$0P:(DE-Juel1)161554$$aLuebke, Anna$$b2$$ufzj
000820660 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b3$$ufzj
000820660 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b4$$ufzj
000820660 7001_ $$0P:(DE-Juel1)156523$$aCosta, Anja$$b5$$ufzj
000820660 7001_ $$0P:(DE-Juel1)129137$$aMeyer, Jessica$$b6
000820660 7001_ $$0P:(DE-HGF)0$$aZöger, Martin$$b7
000820660 7001_ $$0P:(DE-HGF)0$$aSmith, Jessica$$b8
000820660 7001_ $$0P:(DE-HGF)0$$aHerman, Robert L.$$b9
000820660 7001_ $$0P:(DE-HGF)0$$aBuchholz, Bernhard$$b10
000820660 7001_ $$0P:(DE-HGF)0$$aEbert, Volker$$b11
000820660 7001_ $$0P:(DE-HGF)0$$aBaumgardner, Darrel$$b12
000820660 7001_ $$0P:(DE-HGF)0$$aBorrmann, Stephan$$b13
000820660 7001_ $$0P:(DE-HGF)0$$aKlingebiel, Marcus$$b14
000820660 7001_ $$0P:(DE-HGF)0$$aAvallone, Linnea$$b15
000820660 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-3463-2016$$gVol. 16, no. 5, p. 3463 - 3483$$n5$$p3463 - 3483$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000820660 8564_ $$uhttps://juser.fz-juelich.de/record/820660/files/acp-16-3463-2016-1.pdf$$yOpenAccess
000820660 8564_ $$uhttps://juser.fz-juelich.de/record/820660/files/acp-16-3463-2016-1.gif?subformat=icon$$xicon$$yOpenAccess
000820660 8564_ $$uhttps://juser.fz-juelich.de/record/820660/files/acp-16-3463-2016-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820660 8564_ $$uhttps://juser.fz-juelich.de/record/820660/files/acp-16-3463-2016-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820660 8564_ $$uhttps://juser.fz-juelich.de/record/820660/files/acp-16-3463-2016-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820660 8564_ $$uhttps://juser.fz-juelich.de/record/820660/files/acp-16-3463-2016-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820660 909CO $$ooai:juser.fz-juelich.de:820660$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000820660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b0$$kFZJ
000820660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b1$$kFZJ
000820660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161554$$aForschungszentrum Jülich$$b2$$kFZJ
000820660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b3$$kFZJ
000820660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b4$$kFZJ
000820660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156523$$aForschungszentrum Jülich$$b5$$kFZJ
000820660 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000820660 9141_ $$y2016
000820660 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000820660 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820660 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820660 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000820660 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000820660 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000820660 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820660 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820660 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820660 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820660 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000820660 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820660 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820660 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820660 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000820660 9801_ $$aFullTexts
000820660 980__ $$ajournal
000820660 980__ $$aVDB
000820660 980__ $$aUNRESTRICTED
000820660 980__ $$aI:(DE-Juel1)IEK-7-20101013
000820660 981__ $$aI:(DE-Juel1)ICE-4-20101013