001     820664
005     20240712100904.0
024 7 _ |a 10.5194/acp-16-9505-2016
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/12726
|2 Handle
024 7 _ |a WOS:000381213300040
|2 WOS
024 7 _ |a altmetric:10112475
|2 altmetric
037 _ _ |a FZJ-2016-05933
082 _ _ |a 550
100 1 _ |a Woiwode, Wolfgang
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Spectroscopic evidence of large aspherical β-NAT particles involved in denitrification in the December 2011 Arctic stratosphere
260 _ _ |a Katlenburg-Lindau
|c 2016
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479193247_794
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We analyze polar stratospheric cloud (PSC) signatures in airborne MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding – STRatospheric aircraft) observations in the spectral regions from 725 to 990 and 1150 to 1350 cm−1 under conditions suitable for the existence of nitric acid trihydrate (NAT) above northern Scandinavia on 11 December 2011. The high-resolution infrared limb emission spectra of MIPAS-STR show a characteristic “shoulder-like” signature in the spectral region around 820 cm−1, which is attributed to the ν2 symmetric deformation mode of NO3− in β-NAT. Using radiative transfer calculations involving Mie and T-Matrix methods, the spectral signatures of spherical and aspherical particles are simulated. The simulations are constrained using collocated in situ particle measurements. Simulations assuming highly aspherical spheroids with aspect ratios (AR) of 0.1 or 10.0 and a lognormal particle mode with a mode radius of 4.8 µm reproduce the observed spectra to a high degree. A smaller lognormal mode with a mode radius of 2.0 µm, which is also taken into account, plays only a minor role. Within the scenarios analyzed, the best overall agreement is found for elongated spheroids with AR  =  0.1. Simulations of spherical particles and spheroids with AR  =  0.5 and 2.0 return results very similar to each other and do not allow us to reproduce the signature around 820 cm−1. The observed “shoulder-like” signature is explained by the combination of the absorption/emission and scattering characteristics of large highly aspherical β-NAT particles. The size distribution supported by our results corresponds to ∼ 9 ppbv of gas-phase equivalent HNO3 at the flight altitude of ∼ 18.5 km. The results are compared with the size distributions derived from the in situ observations, a corresponding Chemical Lagrangian Model of the Stratosphere (CLaMS) simulation, and excess gas-phase HNO3 observed in a nitrification layer directly below the observed PSC. The presented results suggest that large highly aspherical β-NAT particles involved in denitrification of the polar stratosphere can be identified by means of passive infrared limb emission measurements.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Höpfner, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bi, Lei
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pitts, Michael C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Poole, Lamont R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Oelhaf, Hermann
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Molleker, Sergej
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Borrmann, Stephan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Klingebiel, Marcus
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Belyaev, Gennady
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ebersoldt, Andreas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Griessbach, Sabine
|0 P:(DE-Juel1)129121
|b 11
|u fzj
700 1 _ |a Grooß, Jens-Uwe
|0 P:(DE-Juel1)129122
|b 12
|u fzj
700 1 _ |a Gulde, Thomas
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 14
|u fzj
700 1 _ |a Maucher, Guido
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Piesch, Christof
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Rolf, Christian
|0 P:(DE-Juel1)139013
|b 17
|u fzj
700 1 _ |a Sartorius, Christian
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Spang, Reinhold
|0 P:(DE-Juel1)129154
|b 19
|u fzj
700 1 _ |a Orphal, Johannes
|0 P:(DE-HGF)0
|b 20
773 _ _ |a 10.5194/acp-16-9505-2016
|g Vol. 16, no. 14, p. 9505 - 9532
|0 PERI:(DE-600)2069847-1
|n 14
|p 9505 - 9532
|t Atmospheric chemistry and physics
|v 16
|y 2016
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/820664/files/acp-16-9505-2016.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820664/files/acp-16-9505-2016.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820664/files/acp-16-9505-2016.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820664/files/acp-16-9505-2016.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820664/files/acp-16-9505-2016.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820664/files/acp-16-9505-2016.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:820664
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)129131
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)139013
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)129154
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21