001 | 820670 | ||
005 | 20240712100819.0 | ||
024 | 7 | _ | |2 doi |a 10.1175/JAS-D-15-0365.1 |
024 | 7 | _ | |2 ISSN |a 0022-4928 |
024 | 7 | _ | |2 ISSN |a 0095-9634 |
024 | 7 | _ | |2 ISSN |a 1520-0469 |
024 | 7 | _ | |2 WOS |a WOS:000384679900007 |
024 | 7 | _ | |2 Handle |a 2128/18164 |
037 | _ | _ | |a FZJ-2016-05939 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Järvinen, Emma |b 0 |e Corresponding author |
245 | _ | _ | |a Quasi-Spherical Ice in Convective Clouds |
260 | _ | _ | |a Boston, Mass. |b American Meteorological Soc. |c 2016 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1478764007_18736 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Homogeneous freezing of supercooled droplets occurs in convective systems in low and midlatitudes. This droplet-freezing process leads to the formation of a large amount of small ice particles, so-called frozen droplets, that are transported to the upper parts of anvil outflows, where they can influence the cloud radiative properties. However, the detailed microphysics and, thus, the scattering properties of these small ice particles are highly uncertain. Here, the link between the microphysical and optical properties of frozen droplets is investigated in cloud chamber experiments, where the frozen droplets were formed, grown, and sublimated under controlled conditions. It was found that frozen droplets developed a high degree of small-scale complexity after their initial formation and subsequent growth. During sublimation, the small-scale complexity disappeared, releasing a smooth and near-spherical ice particle. Angular light scattering and depolarization measurements confirmed that these sublimating frozen droplets scattered light similar to spherical particles: that is, they had angular light-scattering properties similar to water droplets. The knowledge gained from this laboratory study was applied to two case studies of aircraft measurements in midlatitude and tropical convective systems. The in situ aircraft measurements confirmed that the microphysics of frozen droplets is dependent on the humidity conditions they are exposed to (growth or sublimation). The existence of optically spherical frozen droplets can be important for the radiative properties of detraining convective outflows. |
536 | _ | _ | |0 G:(DE-HGF)POF3-244 |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) |c POF3-244 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schnaiter, Martin |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Mioche, Guillaume |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Jourdan, Olivier |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Shcherbakov, Valery N. |b 4 |
700 | 1 | _ | |0 P:(DE-Juel1)156523 |a Costa, Anja |b 5 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)129108 |a Afchine, Armin |b 6 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)129131 |a Krämer, Martina |b 7 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Heidelberg, Fabian |b 8 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Jurkat, Tina |b 9 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Voigt, Christiane |b 10 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schlager, Hans |b 11 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Nichman, Leonid |b 12 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Gallagher, Martin |b 13 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Hirst, Edwin |b 14 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schmitt, Carl |b 15 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Bansemer, Aaron |b 16 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Heymsfield, Andy |b 17 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Lawson, Paul |b 18 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Tricoli, Ugo |b 19 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Pfeilsticker, Klaus |b 20 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Vochezer, Paul |b 21 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Möhler, Ottmar |b 22 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Leisner, Thomas |b 23 |
773 | _ | _ | |0 PERI:(DE-600)2025890-2 |a 10.1175/JAS-D-15-0365.1 |g Vol. 73, no. 10, p. 3885 - 3910 |n 10 |p 3885 - 3910 |t Journal of the atmospheric sciences |v 73 |x 1520-0469 |y 2016 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820670/files/jas-d-15-0365.1.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820670/files/jas-d-15-0365.1.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820670/files/jas-d-15-0365.1.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820670/files/jas-d-15-0365.1.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820670/files/jas-d-15-0365.1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:820670 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)156523 |a Forschungszentrum Jülich |b 5 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129108 |a Forschungszentrum Jülich |b 6 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129131 |a Forschungszentrum Jülich |b 7 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-244 |1 G:(DE-HGF)POF3-240 |2 G:(DE-HGF)POF3-200 |a DE-HGF |l Atmosphäre und Klima |v Composition and dynamics of the upper troposphere and middle atmosphere |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b J ATMOS SCI : 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|