000820728 001__ 820728
000820728 005__ 20240619091216.0
000820728 0247_ $$2doi$$a10.1021/acs.jpcb.6b05433
000820728 0247_ $$2ISSN$$a1089-5647
000820728 0247_ $$2ISSN$$a1520-5207
000820728 0247_ $$2ISSN$$a1520-6106
000820728 0247_ $$2WOS$$aWOS:000387738300014
000820728 0247_ $$2altmetric$$aaltmetric:12948430
000820728 0247_ $$2pmid$$apmid:27748120
000820728 037__ $$aFZJ-2016-05996
000820728 041__ $$aEnglish
000820728 082__ $$a530
000820728 1001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b0$$eCorresponding author$$ufzj
000820728 245__ $$aCombined Coarse-Grained Molecular Dynamics and Neutron Reflectivity Characterization of Supported Lipid Membranes
000820728 260__ $$aWashington, DC$$bSoc.$$c2016
000820728 3367_ $$2DRIVER$$aarticle
000820728 3367_ $$2DataCite$$aOutput Types/Journal article
000820728 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480423520_20527
000820728 3367_ $$2BibTeX$$aARTICLE
000820728 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820728 3367_ $$00$$2EndNote$$aJournal Article
000820728 520__ $$aSupported lipid bilayers on planar surfaces constitute an archetypical experimental system for the study of biological membranes. The popularity of these ordered molecular layers in the literature, is on one hand related to the simplicity of their preparation using the method of vesicle fusion and on the other hand to their compatibility with a multitude of surface sensitive experimental probes. Neutron reflectivity has proven as an important experimental method for the investigation of such systems with the ability to provide subnanometer structural information perpendicular to the supporting plane. Traditionally reflectivity data are compared to theoretical curves of simplified models consisting of stratified layers representing the hydrophilic (lipid heads) and hydrophobic (lipid tails) parts of the bilayer. In the present work we explore the combined use of molecular simulations and neutron reflectivity for the characterization of supported membranes. By performing coarse-grained molecular dynamics simulations based on the MARTINI force field of supported 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) bilayers close to a hydrophilic substrate, we compared the obtained reflectivity profiles with neutron reflectivity data for this system at a series of temperatures above and below the main phase transition. It is found that the use of an imperfectly smooth substrate in the coarse grained simulation is of vital importance for avoiding the artificial freezing of water that is trapped between the surface and the bilayer. The observed quantitative agreement between simulation and experiment using “rough” supporting surfaces, especially for the liquid lipid phase, exhibits that the presented methodology may serve as a basis for the detailed and assumption-free investigation of more elaborate systems.
000820728 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000820728 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000820728 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000820728 588__ $$aDataset connected to CrossRef
000820728 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000820728 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000820728 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000820728 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.6b05433$$gVol. 120, no. 44, p. 11474 - 11483$$n44$$p11474 - 11483$$tThe @journal of physical chemistry <Washington, DC> / B$$v120$$x1520-5207$$y2016
000820728 8564_ $$uhttps://juser.fz-juelich.de/record/820728/files/manuscript.pdf$$yRestricted
000820728 8564_ $$uhttps://juser.fz-juelich.de/record/820728/files/manuscript.gif?subformat=icon$$xicon$$yRestricted
000820728 8564_ $$uhttps://juser.fz-juelich.de/record/820728/files/manuscript.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820728 8564_ $$uhttps://juser.fz-juelich.de/record/820728/files/manuscript.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820728 8564_ $$uhttps://juser.fz-juelich.de/record/820728/files/manuscript.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820728 8564_ $$uhttps://juser.fz-juelich.de/record/820728/files/manuscript.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820728 909CO $$ooai:juser.fz-juelich.de:820728$$pVDB$$pVDB:MLZ
000820728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich$$b0$$kFZJ
000820728 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000820728 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000820728 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000820728 9141_ $$y2016
000820728 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820728 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820728 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820728 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820728 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820728 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820728 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820728 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820728 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820728 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820728 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2015
000820728 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820728 920__ $$lyes
000820728 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000820728 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000820728 980__ $$ajournal
000820728 980__ $$aVDB
000820728 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000820728 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000820728 980__ $$aUNRESTRICTED