000820730 001__ 820730
000820730 005__ 20240625095128.0
000820730 0247_ $$2doi$$a10.1021/acs.jctc.6b00600
000820730 0247_ $$2ISSN$$a1549-9618
000820730 0247_ $$2ISSN$$a1549-9626
000820730 0247_ $$2WOS$$aWOS:000387519400031
000820730 0247_ $$2altmetric$$aaltmetric:12570027
000820730 0247_ $$2pmid$$apmid:27682200
000820730 037__ $$aFZJ-2016-05998
000820730 082__ $$a540
000820730 1001_ $$0P:(DE-HGF)0$$aLa Sala, Giuseppina$$b0
000820730 245__ $$aHRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase
000820730 260__ $$aWashington, DC$$c2016
000820730 3367_ $$2DRIVER$$aarticle
000820730 3367_ $$2DataCite$$aOutput Types/Journal article
000820730 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478846690_32301
000820730 3367_ $$2BibTeX$$aARTICLE
000820730 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820730 3367_ $$00$$2EndNote$$aJournal Article
000820730 520__ $$aA number of structural factors modulate the activity of Abelson (Abl) tyrosine kinase, whose deregulation is often related to oncogenic processes. First, only the open conformation of the Abl kinase domain’s activation loop (A-loop) favors ATP binding to the catalytic cleft. In this regard, the trans-autophosphorylation of the Y412 residue, which is located along the A-loop, favors the stability of the open conformation, in turn enhancing Abl activity. Another key factor for full Abl activity is the formation of active conformations of the catalytic DFG motif in the Abl kinase domain. Furthermore, binding of the SH2 domain to the N-lobe of the Abl kinase was recently demonstrated to have a long-range allosteric effect on the stabilization of the A-loop open state. Intriguingly, these distinct structural factors imply a complex signal transmission network for controlling the A-loop’s flexibility and conformational preference for optimal Abl function. However, the exact dynamical features of this signal transmission network structure remain unclear. Here, we report on microsecond-long molecular dynamics coupled with enhanced sampling simulations of multiple Abl model systems, in the presence or absence of the SH2 domain and with the DFG motif flipped in two ways (in or out conformation). Through comparative analysis, our simulations augment the interpretation of the existing Abl experimental data, revealing a dynamical network of interactions that interconnect SH2 domain binding with A-loop plasticity and Y412 autophosphorylation in Abl. This signaling network engages the DFG motif and, importantly, other conserved structural elements of the kinase domain, namely, the EPK-ELK H-bond network and the HRD motif. Our results show that the signal propagation for modulating the A-loop spatial localization is highly dependent on the HRD motif conformation, which thus acts as the central hub of this (allosteric) signaling network controlling Abl activation and function.
000820730 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000820730 588__ $$aDataset connected to CrossRef
000820730 7001_ $$0P:(DE-HGF)0$$aRiccardi, Laura$$b1
000820730 7001_ $$0P:(DE-HGF)0$$aGaspari, Roberto$$b2
000820730 7001_ $$0P:(DE-HGF)0$$aCavalli, Andrea$$b3
000820730 7001_ $$0P:(DE-HGF)0$$aHantschel, Oliver$$b4
000820730 7001_ $$0P:(DE-Juel1)167585$$aDe Vivo, Marco$$b5$$eCorresponding author
000820730 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.6b00600$$gVol. 12, no. 11, p. 5563 - 5574$$n11$$p5563 - 5574$$tJournal of chemical theory and computation$$v12$$x1549-9626$$y2016
000820730 8564_ $$uhttps://juser.fz-juelich.de/record/820730/files/acs.jctc.6b00600.pdf$$yRestricted
000820730 8564_ $$uhttps://juser.fz-juelich.de/record/820730/files/acs.jctc.6b00600.gif?subformat=icon$$xicon$$yRestricted
000820730 8564_ $$uhttps://juser.fz-juelich.de/record/820730/files/acs.jctc.6b00600.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820730 8564_ $$uhttps://juser.fz-juelich.de/record/820730/files/acs.jctc.6b00600.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820730 8564_ $$uhttps://juser.fz-juelich.de/record/820730/files/acs.jctc.6b00600.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820730 8564_ $$uhttps://juser.fz-juelich.de/record/820730/files/acs.jctc.6b00600.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820730 909CO $$ooai:juser.fz-juelich.de:820730$$pVDB
000820730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167585$$aForschungszentrum Jülich$$b5$$kFZJ
000820730 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000820730 9141_ $$y2016
000820730 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820730 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2015
000820730 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2015
000820730 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820730 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820730 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820730 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820730 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820730 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820730 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820730 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000820730 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000820730 980__ $$ajournal
000820730 980__ $$aVDB
000820730 980__ $$aUNRESTRICTED
000820730 980__ $$aI:(DE-Juel1)IAS-5-20120330
000820730 980__ $$aI:(DE-Juel1)INM-9-20140121
000820730 981__ $$aI:(DE-Juel1)INM-9-20140121