Home > Publications database > Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity > print |
001 | 820731 | ||
005 | 20240625095128.0 | ||
024 | 7 | _ | |a 10.1073/pnas.1606791113 |2 doi |
024 | 7 | _ | |a 0027-8424 |2 ISSN |
024 | 7 | _ | |a 1091-6490 |2 ISSN |
024 | 7 | _ | |a WOS:000385610400024 |2 WOS |
024 | 7 | _ | |a altmetric:12462379 |2 altmetric |
024 | 7 | _ | |a pmid:27708160 |2 pmid |
037 | _ | _ | |a FZJ-2016-05999 |
082 | _ | _ | |a 000 |
100 | 1 | _ | |a Villar-Piqué, Anna |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity |
260 | _ | _ | |a Washington, DC |c 2016 |b National Acad. of Sciences |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1479193273_784 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity. |
536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |f POF III |x 0 |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Lopes da Fonseca, Tomás |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sant’Anna, Ricardo |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Szegö, Éva Mónika |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Fonseca-Ornelas, Luis |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Pinho, Raquel |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Carija, Anita |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Gerhardt, Ellen |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Masaracchia, Caterina |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Abad Gonzalez, Enrique |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Rossetti, Giulia |0 P:(DE-Juel1)145921 |b 10 |u fzj |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 11 |u fzj |
700 | 1 | _ | |a Fernández, Claudio O. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Foguel, Debora |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Milosevic, Ira |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Zweckstetter, Markus |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Ventura, Salvador |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Outeiro, Tiago Fleming |0 P:(DE-HGF)0 |b 17 |e Corresponding author |
773 | _ | _ | |a 10.1073/pnas.1606791113 |g Vol. 113, no. 42, p. E6506 - E6515 |0 PERI:(DE-600)1461794-8 |n 42 |p E6506 - E6515 |t Proceedings of the National Academy of Sciences of the United States of America |v 113 |y 2016 |x 1091-6490 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820731/files/PNAS-2016-Villar-Piqu%C3%A9-E6506-15.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820731/files/PNAS-2016-Villar-Piqu%C3%A9-E6506-15.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:820731 |p VDB |
910 | 1 | _ | |a German Research School for Simulation Sciences |0 I:(DE-588b)1026307295 |k GRS Aachen |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)145614 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b P NATL ACAD SCI USA : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b P NATL ACAD SCI USA : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)GRS-20100316 |k GRS Jülich ; German Research School for Simulation Sciences |l GRS |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a I:(DE-Juel1)GRS-20100316 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
981 | _ | _ | |a I:(DE-Juel1)GRS-20100316 |
981 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|